Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(4): 1844-1858, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38900073

RESUMEN

Fruit ripening is an essential developmental stage in Angiosperms triggered by hormonal signals such as ethylene, a major player in climacteric ripening. Melon is a unique crop showing both climacteric and non-climacteric cultivars, offering an ideal model for dissecting the genetic mechanisms underpinning this process. The major quantitative trait locus ETHQV8.1 was previously identified as a key regulator of melon fruit ripening. Here, we narrowed down ETHQV8.1 to a precise genomic region containing a single gene, the transcription factor CmERF024. Functional validation using CRISPR/Cas9 knock-out plants unequivocally identified CmERF024 as the causal gene governing ETHQV8.1. The erf024 mutants exhibited suppression of ethylene production, leading to a significant delay and attenuation of fruit ripening. Integrative multi-omic analyses encompassing RNA-seq, DAP-seq, and DNase-seq revealed the association of CmERF024 with chromatin accessibility and gene expression dynamics throughout fruit ripening. Our data suggest CmERF024 as a novel regulator of climacteric fruit ripening in melon.


Asunto(s)
Cucurbitaceae , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Cucurbitaceae/metabolismo , Sitios de Carácter Cuantitativo/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
2.
Plant J ; 119(3): 1400-1417, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815085

RESUMEN

Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.


Asunto(s)
Ácido Abscísico , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Ácido Abscísico/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Fragaria/genética , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Fragaria/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Azúcares/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
3.
Plant J ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226395

RESUMEN

Long non-coding RNAs (lncRNAs) play crucial roles in various biological processes in plants. However, the functional mechanism of lncRNAs in fruit ripening, particularly the transition from unripe to ripe stages, remains elusive. One such lncRNA1840, reported by our group, was found to have important role in tomato fruit ripening. In the present study, we gain insight into its functional role in fruit ripening. CRISPR-Cas9 mediated lncRNA1840 mutants caused the delayed tomato fruit ripening. Notably, loss function of lncRNA1840 did not directly impact ethylene signaling but rather delay ethylene synthesis. Transcriptomic analysis revealed differences in the expression of ripening related genes in lncRNA1840 mutants, suggesting that it is involved in gene regulation of fruit ripening. We used Chromatin Isolation by RNA Purification (ChIRP)-Seq to identify lncRNA1840 binding sites on chromatin. ChIRP-seq suggested that lncRNA1840 had occupancy on 40 genes, but none of them is differentially expressed genes in transcriptomic analysis, which indicated lncRNA1840 might indirectly modulate the gene expression. ChIRP-mass spectrometry analysis identified potential protein interactors of lncRNA1840, Pre-mRNA processing splicing factor 8, highlighting its involvement in post-transcriptional regulatory pathways. In summary, lncRNA1840 is key player in tomato plant growth and fruit ripening, with multifaceted roles in gene expression and regulatory networks.

4.
Biochem J ; 481(13): 883-901, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38884605

RESUMEN

Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.


Asunto(s)
Capsicum , Catalasa , Frutas , Óxido Nítrico , Proteínas de Plantas , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/enzimología , Capsicum/metabolismo , Catalasa/metabolismo , Catalasa/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Frutas/enzimología , Frutas/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Ácido Peroxinitroso/metabolismo
5.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314636

RESUMEN

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Asunto(s)
Difosfatos , Prunus avium , Vitamina E , Vitamina E/metabolismo , Frutas , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Tocoferoles/metabolismo , Clorofila/metabolismo , Fitol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Biol Chem ; 299(10): 105250, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714466

RESUMEN

Abscisic acid (ABA) is a critical regulator for nonclimacteric fruit ripening such as in the model plant of strawberry (Fragaria × ananassa). Although FaRRP1 is proposed to participate in clathrin-mediated endocytosis of ABA, its action molecular mechanisms in ABA signaling are not fully understood. Here, using our isolated FaRRP1 (ripening-regulation protein) and candidate ABA receptor FaPYL2 and FaABAR from strawberry fruit, a series of silico and molecular interaction analyses demonstrate that they all bind to ABA, and FaRRP1 binds both FaPYL2 and FaABAR; by contrast, the binding affinity of FaRRP1 to FaPYL2 is relatively higher. Interestingly, the binding of FaRRP1 to FaPYL2 and FaABAR affects the perception affinity to ABA. Furthermore, exogenous ABA application and FaRRP1 transgenic analyses confirm that FaRRP1 participates in clathrin-mediated endocytosis and vesicle transport. Importantly, FaRRP1, FaPYL2, and FaABAR all trigger the initiation of strawberry fruit ripening at physiological and molecular levels. In conclusion, FaRRP1 not only binds to ABA but also affects the binding affinity of FaPYL2 and FaABAR to ABA, thus promoting strawberry fruit ripening. Our findings provide novel insights into the role of FaRRP1 in ABA trafficking and signaling, at least in strawberry, a model plant for nonclimacteric fruit ripening.

7.
BMC Genomics ; 25(1): 735, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080567

RESUMEN

BACKGROUND: The fruit ripening period is an important target trait in fruit tree crop breeding programs. Thus, citrus tree breeders seek to develop extreme early ripening cultivars that allow optimization of citrus maturation periods. In this study, we explored the regulatory network involved in fruit ripening in Citrus sinensis using the 'Newhall' navel orange variety and its early-ripening mutant, 'Gannanzao'. This research will provide a basis for further research on important signaling pathways, gene functions and variety breeding of Citrus sinensis related to fruit ripening period. RESULTS: Physiological analyses suggested that early fruit ripening in 'Gannanzao' is regulated by early accumulation of abscisic acid (ABA), persistently high levels of jasmonic acid (JA), and higher sucrose content in the pericarp. Pericarp samples from 'Gannanzao' and 'Newhall' navel oranges were sampled for RNA sequencing analysis at 180, 200, and 220 days after flowering; 1430 differentially expressed genes (DEGs) were identified. Functional enrichment analysis indicated that these DEGs were mainly enriched in the plant hormone signal transduction and sugar metabolism pathways, as well as other pathways related to fruit ripening. Important DEGs associated with fruit ripening in 'Gannanzao' included genes involved in ABA and JA metabolism and signal transduction, as well as sugar metabolism. Weighted gene co-expression network analysis showed that the deep pink module had the strongest correlations with ABA content, JA content, and early ripening. Based on gene functionality and gene expression analyses of 37 genes in this module, two candidate hub genes and two ethylene response factor 13 (ERF13) genes (Cs_ont_5g000690 and Cs_ont_5g000700) were identified as key genes regulated by ABA and JA signaling. These findings will help to clarify the mechanisms that underlie early citrus fruit ripening and will lead to the development of excellent genetic resources for further breeding of extreme early-ripening varieties. CONCLUSIONS: Through analyses of the 'Newhall' navel orange cultivar and its early-ripening mutant 'Gannanzao', we identified genes involved in ABA and JA metabolism, signal transduction, and sugar metabolism that were related to fruit ripening. Among these, two ERF13 genes were inferred to be key genes in the regulation of fruit ripening. These findings provide insights into the genetic architecture related to early fruit ripening in C. sinensis.


Asunto(s)
Citrus sinensis , Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Citrus sinensis/genética , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Genomics ; 25(1): 228, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429694

RESUMEN

BACKGROUND: Late embryogenesis abundant (LEA) proteins play important roles in plant growth and development, as well as stresses responsiveness. Nowadays, it has been found that LEAs also have function in fruit ripening. However, the comprehensive analysis on a genome-wide basis of LEA family remains limited, and the role of LEA in fruit ripening has not been fully explored yet, especially in strawberry, an economic important plant and ideal material for studying fruit ripening. RESULTS: In this study, a total of 266 putative LEA proteins were identified and characterized in strawberry genome. Subcellular localization prediction indicated that they were mostly localized in chloroplast, cytoplasm and nucleus. Duplication events detection revealed that whole genome duplication or segmental was the main driver for the expansion of LEA family in strawberry. The phylogenetic analysis suggested that FaLEAs were classified into eight groups, among which, LEA2 was the largest subgroup with 179 members, followed by LEA3, dehydrin (DHN), LEA4 and SMP (seed maturation protein). The LEA1 and DHN groups were speculated to play dominant roles in strawberry fruit development and ripening, according to their larger proportion of members detected as differentially expressed genes during such process. Notably, the expression of FaLEA167 belonging to LEA1 group was altered by strawberry maturation, and inhibited by overexpression of negative regulators of ripening (a cytosolic/plastid glyceraldehyde-3-phosphate dehydrogenase, FaGAPC2 and a cytosolic pyruvate kinase, FaPKc2.2). Subsequently, overexpression of FaLEA167 significantly increased the percentage of fruit at green stage, while reduced the full red fruit proportion. In consistent, the anthocyanins content and the fruit skin color variable reflecting a range from greenness to redness (a* value) were significantly reduced. Whereas, FaLEA167 overexpression apparently up-regulated citric acid, soluble protein and malondialdehyde content, but had no obvious effects on total soluble solids, sugar, flavonoids, phenolics content and antioxidant capacity. CONCLUSIONS: These findings not only provided basic information of FaLEA family for further functional research, but also revealed the involvement of FaLEA167 in negatively regulating strawberry fruit ripening, giving new insights into understanding of FaLEA functions.


Asunto(s)
Fragaria , Antocianinas/metabolismo , Frutas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant Mol Biol ; 114(4): 84, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995453

RESUMEN

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.


Asunto(s)
Pared Celular , Frutas , Proteínas de Plantas , Pared Celular/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo
10.
Biochem Biophys Res Commun ; 733: 150615, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39213704

RESUMEN

Fruit ripening is a highly intricate process, where the dynamic interplay of soluble sugar and organic acid metabolism is crucial for developing the characteristic flavor qualities. Pyruvate orthophosphate dikinase (PPDK) plays a pivotal role in modulating the process of gluconeogenesis during plant development. However, the specific physiological role of PPDK in fruit development has yet to be elucidated. In this study, we investigated the expression pattern, subcellular localization and functional significance of SlPPDK in tomato fruits. Our results reveal that SlPPDK is highly expressed in fruits and flowers, with its expression progressively increasing as the fruit ripens. Subcellular localization analyses demonstrate that SlPPDK is distributed in the cell membrane, cytoplasm, and nucleus. Using CRISPR/Cas9 technology, we generated SlPPDK knockout mutants, which exhibited a marked reduction in enzyme activity, leading to significant alterations in sugar and organic acid metabolism. These findings highlight the critical role of SlPPDK in maintaining the sugar-acid balance essential for tomato flavor quality and provide a foundation for future breeding strategies aimed at enhancing tomato fruit flavor.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Azúcares/metabolismo , Gusto/fisiología , Metabolismo de los Hidratos de Carbono , Ácidos/metabolismo
11.
BMC Plant Biol ; 24(1): 68, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262956

RESUMEN

BACKGROUND: Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS: Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION: This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.


Asunto(s)
Carica , Quitosano , Ciclopropanos , Compuestos Organofosforados , Frutas , Filogenia , Ácido Ascórbico
12.
Planta ; 259(5): 109, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558186

RESUMEN

MAIN CONCLUSION: Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.


Asunto(s)
Frutas , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Epigénesis Genética , Etilenos/metabolismo , Silenciador del Gen , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319003

RESUMEN

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Asunto(s)
Ácido Abscísico , Calcio , Carica , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Carica/metabolismo , Carica/genética , Carica/crecimiento & desarrollo , Calcio/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calmodulina/metabolismo , Calmodulina/genética , Reguladores del Crecimiento de las Plantas/metabolismo
14.
New Phytol ; 241(5): 2227-2242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38151719

RESUMEN

The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation is known to completely repress fruit ripening. The heterozygous (RIN/rin) fruits have extended shelf life, ripen normally, but have inferior taste/flavour. To address this, we used genome editing to generate newer alleles of RIN (rinCR ) by targeting the K-domain. Unlike previously reported CRISPR alleles, the rinCR alleles displayed delayed onset of ripening, suggesting that the mutated K-domain represses the onset of ripening. The rinCR fruits had extended shelf life and accumulated carotenoids at an intermediate level between rin and progenitor line. Besides, the metabolites and hormonal levels in rinCR fruits were more akin to rin. To overcome the negative attributes of rin, we crossed the rinCR alleles with Nps1, a dominant-negative phototropin1 mutant, which enhances carotenoid levels in tomato fruits. The resulting Nps1/rinCR hybrids had extended shelf life and 4.4-7.1-fold higher carotenoid levels than the wild-type parent. The metabolome of Nps1/rinCR fruits revealed higher sucrose, malate, and volatiles associated with tomato taste and flavour. Notably, the boosted volatiles in Nps1/rinCR were only observed in fruits bearing the homozygous Nps1 mutation. The Nps1 introgression into tomato provides a promising strategy for developing cultivars with extended shelf life, improved taste, and flavour.


Asunto(s)
Carotenoides , Solanum lycopersicum , Carotenoides/metabolismo , Solanum lycopersicum/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Gusto , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
15.
J Exp Bot ; 75(9): 2716-2732, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442039

RESUMEN

Ascorbate peroxidase (APX) is one of the enzymes of the ascorbate-glutathione cycle and is the key enzyme that breaks down H2O2 with the aid of ascorbate as an electron source. APX is present in all photosynthetic eukaryotes from algae to higher plants and, at the cellular level, it is localized in all subcellular compartments where H2O2 is generated, including the apoplast, cytosol, plastids, mitochondria, and peroxisomes, either in soluble form or attached to the organelle membranes. APX activity can be modulated by various post-translational modifications including tyrosine nitration, S-nitrosation, persulfidation, and S-sulfenylation. This allows the connection of H2O2 metabolism with other relevant signaling molecules such as NO and H2S, thus building a complex coordination system. In both climacteric and non-climacteric fruits, APX plays a key role during the ripening process and during post-harvest, since it participates in the regulation of both H2O2 and ascorbate levels affecting fruit quality. Currently, the exogenous application of molecules such as NO, H2S, H2O2, and, more recently, melatonin is seen as a new alternative to maintain and extend the shelf life and quality of fruits because they can modulate APX activity as well as other antioxidant systems. Therefore, these molecules are being considered as new biotechnological tools to improve crop quality in the horticultural industry.


Asunto(s)
Ascorbato Peroxidasas , Frutas , Ascorbato Peroxidasas/metabolismo , Frutas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo
16.
J Exp Bot ; 75(11): 3337-3350, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38486362

RESUMEN

Galactinol synthase (GolS), which catalyses the synthesis of galactinol, is the first critical enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs) and contributes to plant growth and development, and resistance mechanisms. However, its role in fruit development remains largely unknown. In this study, we used CRISPR/Cas9 gene-editing technology in tomato (Solanum lycopersicum) to create the gols2 mutant showing uniformly green fruits without dark-green shoulders, and promoting fruit ripening. Analysis indicated that galactinol was undetectable in the ovaries and fruits of the mutant, and the accumulation of chlorophyll and chloroplast development was suppressed in the fruits. RNA-sequencing analysis showed that genes related to chlorophyll accumulation and chloroplast development were down-regulated, including PROTOCHLOROPHYLLIDE OXIDOREDUCTASE, GOLDEN 2-LIKE 2, and CHLOROPHYLL A/B-BINDING PROTEINS. In addition, early color transformation and ethylene release was prompted in the gols2 lines by regulation of the expression of genes involved in carotenoid and ethylene metabolism (e.g. PHYTOENE SYNTHASE 1, CAROTENE CIS-TRANS ISOMERASE, and 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2/4) and fruit ripening (e.g. RIPENING INHIBITOR, NON-RIPENING, and APETALA2a). Our results provide evidence for the involvement of GolS2 in pigment and ethylene metabolism of tomato fruits.


Asunto(s)
Carotenoides , Clorofila , Etilenos , Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética , Regulación de la Expresión Génica de las Plantas
17.
J Exp Bot ; 75(18): 5627-5640, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38808519

RESUMEN

Strawberry (Fragaria × ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, the signaling of ABA in the regulation of fruit coloration is not fully understood. In this study, we identified the transcription factor BASIC HELIX-LOOP-HELIX 3 (bHLH3) as being key to fruit coloration via yeast two-hybrid library screening using the bait SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2 (SnRK2.6), which is a core ABA signaling component that negatively regulates ripening. The interaction was also confirmed by firefly luciferase complementation assays and pull-down assays. RT-qPCR and western blot analysis confirmed that bHLH3 is expressed ubiquitously in strawberry tissues, and it is expressed stably during fruit development. Overexpression and RNAi of both bHLH3 and SnRK2.6 demonstrated that bHLH3 and SnRK2.6 promote and inhibit strawberry fruit coloration, respectively. Using EMSAs, we showed that bHLH3 promotes the expression of UDP-GLUCOSE: FLAVONOL-O-GLUCOSYLTRANSFERASE (UFGT), a key gene for anthocyanin biosynthesis, by directly binding to its promoter. We determined that SnRK2.6 can phosphorylate bHLH3 and that this inhibits its binding to the UFGT promoter, consequently suppressing expression. Altogether, we propose that increased ABA content during strawberry fruit ripening leads to decreased expression of SnRK2.6, which in turn releases the phosphorylation of bHLH3 and thereby enhances UFGT expression, ultimately promoting the coloration of the fruit.


Asunto(s)
Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fragaria , Frutas , Proteínas de Plantas , Fragaria/genética , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosforilación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ácido Abscísico/metabolismo
18.
Plant Cell Rep ; 43(9): 212, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127969

RESUMEN

KEY MESSAGE: Auxin (AUX) promotion of apple fruit ripening is ethylene-dependent, and AUX-MdARF17-MdERF003 plays a role in AUX-promoted ethylene synthesis in apple. Phytohormones play important roles in plant growth and fleshy fruit ripening, and the phytohormone auxin (AUX) can either promote or inhibit the ripening of fleshy fruits. Although AUX can influence ethylene (ETH) synthesis in apple (Malus domestica) fruits by affecting ETH system II, this mechanism remains to be explored. Here, we identified an ETH response factor (ERF) family transcription factor, MdERF003, whose expression could be activated by naphthalene acetic acid. The transient silencing of MdERF003 inhibited ETH synthesis in fruits, and MdERF003 could bind to the MdACS1 promoter. To explore the upstream target genes of MdERF003, we screened the MdARF family members by yeast one-hybrid assays of the MdERF003 promoter, and found that the transcription factor MdARF17, which showed AUX-promoted expression, could bind to the MdERF003 promoter and promote its expression. Finally, we silenced MdERF003 in apple fruits overexpressing MdARF17 and found that MdERF003 plays a role in MdARF17-promoted ETH synthesis in apple. Thus, AUX-MdARF17-MdERF003 promotes ETH synthesis in apple fruits.


Asunto(s)
Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Malus , Proteínas de Plantas , Factores de Transcripción , Malus/genética , Malus/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
19.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466441

RESUMEN

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Asunto(s)
Capsicum , Óxido Nítrico , Óxido Nítrico/metabolismo , Frutas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Leucina/metabolismo , Leucil Aminopeptidasa/genética , Leucil Aminopeptidasa/metabolismo , Ácido Peroxinitroso/metabolismo , Cianuros/metabolismo , Dipéptidos/metabolismo
20.
Plant Cell Rep ; 43(2): 41, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246942

RESUMEN

KEY MESSAGE: CRISPR/Cas9-edited TOMATO AGAMOUS-LIKE1 (TAGL1) provided new insights into fruit ripening. TOMATO AGAMOUS LIKE 1 (TAGL1) has been identified as playing a key role in the process of tomato fruit development and ripening. We have re-evaluated the functions of TAGL1 using CRISPR/Cas9 mutagenesis. Three KO mutants contained frameshift mutations resulting in premature termination codons due to a 1 bp insertion. TAGL1-KO mutants exhibited dark immature fruits and orange ripening fruits. The fruit shape was characterized by a prominent pointed tip at the end and the pericarp thickness was significantly thinner. TAGL1-KO mutants showed reduced ethylene biosynthesis, increased firmness, and delayed onset of ripening. The chlorophyll content of TAGL1-KO mutants was higher in the mature green stage and the lycopene content of TAGL1-KO mutants in the ripening stage was lower compared to the WT. ACS2, ACS4, ACO1, ACO3, PG2a, PL, PME, EXP1, and PSY1 in the mutants were significantly down-regulated during ripening. Ripening fruits in the double mutant of rin and tagl1 showed a more extreme phenotype than the rin mutant suggesting that the double mutation acts synergistically during ripening. TAGL1-targeted mutagenesis by CRISPR/Cas9 strengthens its regulatory functions controlling ripening parameters and provides new insights into fruit ripening.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Sistemas CRISPR-Cas/genética , Mutagénesis/genética , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA