RESUMEN
Maize is the third most vital global cereal, playing a key role in the world economy and plant genetics research. Despite its leadership in production, maize faces a severe threat from banded leaf and sheath blight, necessitating the urgent development of eco-friendly management strategies. This study aimed to understand the resistance mechanisms against banded leaf and sheath blight (BLSB) in maize hybrid "Vivek QPM-9". Seven fungicides at recommended doses (1000 and 500 ppm) and two plant defense inducers, salicylic acid (SA) and jasmonic acid (JA) at concentrations of 50 and 100 ppm, were applied. Fungicides, notably Azoxystrobin and Trifloxystrobin + Tebuconazole, demonstrated superior efficacy against BLSB, while Pencycuron showed limited effectiveness. Field-sprayed Azoxystrobin exhibited the lowest BLSB infection, correlating with heightened antioxidant enzyme activity (SOD, CAT, POX, ß-1,3-glucanase, PPO, PAL), similar to the Validamycin-treated plants. The expression of defense-related genes after seed priming with SA and JA was assessed via qRT-PCR. Lower SA concentrations down-regulated SOD, PPO, and APX genes but up-regulated CAT and ß-1,3-glucanase genes. JA at lower doses up-regulated CAT and APX genes, while higher doses up-regulated PPO and ß-1,3-glucanase genes; SOD gene expression was suppressed at both JA doses. This investigation elucidates the effectiveness of certain fungicides and plant defense inducers in mitigating BLSB in maize hybrids and sheds light on the intricate gene expression mechanisms governing defense responses against this pathogen.
RESUMEN
In vitro methods are widely used in modern toxicological testing; however, the data cannot be directly employed for risk assessment. In vivo toxicity of chemicals can be predicted from in vitro data using physiologically based toxicokinetic (PBTK) modelling-facilitated reverse dosimetry (PBTK-RD). In this study, a minimal-PBTK model was constructed to predict the in-vivo kinetic profile of fenarimol (FNL) in rats and humans. The model was verified by comparing the observed and predicted pharmacokinetics of FNL for rats (calibrator) and further applied to humans. Using the PBTK-RD approach, the reported in vitro developmental toxicity data for FNL was translated to in vivo dose-response data to predict the assay equivalent oral dose in rats and humans. The predicted assay equivalent rat oral dose (36.46 mg/kg) was comparable to the literature reported in vivo BMD10 value (22.8 mg/kg). The model was also employed to derive the chemical-specific adjustment factor (CSAF) for interspecies toxicokinetics variability of FNL. Further, Monte Carlo simulations were performed to predict the population variability in the plasma concentration of FNL and to derive CSAF for intersubject human kinetic differences. The comparison of CSAF values for interspecies and intersubject toxicokinetic variability with their respective default values revealed that the applied uncertainty factors were adequately protective.
Asunto(s)
Modelos Biológicos , Pirimidinas , Ratas , Humanos , Animales , Toxicocinética , Método de Montecarlo , Medición de RiesgoRESUMEN
Climate change is having a significant impact on global agriculture, particularly on vegetable crops, which play a critical role in global nutrition. Recently, increasing research has concentrated on the impact of climate change on vegetable crop diseases, with several studies being conducted in phytotrons, which have been used to explore the effects of increased temperatures and CO2 concentrations to simulate future scenarios. This review focuses on the combined effects of temperature and carbon dioxide increases on foliar and soilborne vegetable diseases, as evaluated under phytotron conditions. The influence of climate change on mycotoxin production and disease management strategies is also explored through case studies. The results offer valuable information that can be used to guide both seed and agrochemical industries, as well as to develop disease-resistant varieties and innovative control measures, including biocontrol agents, considering the diseases that are likely to become prevalent under future climatic scenarios. Recommendations on how to manage vegetable diseases under ongoing climate change are proposed to facilitate plants' adaptation to and enhanced against the changing conditions. A proactive and comprehensive response to climate-induced challenges in vegetable farming is imperative to ensure food security and sustainability.
Asunto(s)
Agricultura , Cambio Climático , Productos Agrícolas , Enfermedades de las Plantas , Verduras , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/crecimiento & desarrollo , Dióxido de Carbono/análisis , Temperatura , Micotoxinas/análisisRESUMEN
The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.
Asunto(s)
Diferenciación Celular , Fungicidas Industriales , Transducción de Señal , Tretinoina , Triazoles , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , Diferenciación Celular/efectos de los fármacos , Tretinoina/toxicidad , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Simulación del Acoplamiento Molecular , Dioxolanos/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Nitrilos , SilanosRESUMEN
Anthropogenic chemical pollutants, such as fungicides, pose significant threats to natural ecosystems. Although the direct impacts of numerous chemicals are well-documented in simple environmental contexts, their indirect impacts are poorly understood. This study used two individual level laboratory experiments to assess direct and indirect effects of fungicides on the isopod Asellus aquaticus, a keystone detritivore in freshwater systems. First, a range-finding assay on three widely used fungicides (Fluazinam, Tebuconazole, Urea) showed that Tebuconazole had the strongest concentration-dependent negative effects on A. aquaticus growth and food consumption. Second, a factorial experiment using Tebuconazole assessed its direct and diet-mediated effects and showed that Tebuconazole reduced growth, feeding, and pigmentation through both pathways. The results indicate that assessing only direct impacts of toxic chemicals could overlook critical interactions that are relevant in natural systems, such as those associated with diet. Our study highlights the importance of considering both direct and indirect effects in environmental toxicology to better understand the full impacts of chemical pollutants in nature.
Asunto(s)
Agua Dulce , Fungicidas Industriales , Isópodos , Triazoles , Contaminantes Químicos del Agua , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Isópodos/efectos de los fármacos , Triazoles/toxicidad , Pigmentación/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Monitoreo del Ambiente/métodos , AminopiridinasRESUMEN
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48â¯h to 10⯵M SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5⯵M), fluopyram (EC50=4.8⯵M) and flutolanil (EC50=53.6⯵M). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.
Asunto(s)
Citocromo P-450 CYP3A , Hepatocitos , Succinato Deshidrogenasa , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hepatocitos/efectos de los fármacos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Fungicidas Industriales/toxicidad , ARN Mensajero/metabolismo , ARN Mensajero/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/toxicidad , Línea CelularRESUMEN
Fungicides are often used prophylactically, to control fungal diseases. Although fungicides have been designed to control pests/fungi, they frequently share molecular targets with non-target species, including humans. Tebuconazole, a fungicide belonging to the class of triazoles, is widely employed, has moderate to high persistence in soil, and can be found in different environmental levels. This fungicide is metabolized to the main hydroxy-derived metabolite, Tebuconazole-tert-butyl-hydroxy (or hydroxytebuconazole). This study aims to unveil the action mechanism of Tebuconazole and the role played by its metabolite, Tebuconazole-tert-butyl-hydroxy (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol), within the expected spectrum of toxicity. In silico and in vitro analyses (MTT assay, cell cycle evaluation, annexin/PI assay, ROS accumulation assay, and mitochondrial membrane potential determination) were performed in HepG2 cells for 24 h and 48 h. Although in silico analysis suggested that both Tebuconazole and Tebuconazole-tert-butyl-hydroxy are potentially hepatotoxic, only Tebuconazole affected the tested cell line. Reduced MTT metabolism, and decreased mitochondrial membrane potential were the main findings. In conclusion, the action mechanism of Tebuconazole may be related to mitochondrial dysfunction. However, the findings of this study pointed out that Tebuconazole-tert-butyl-hydroxy does not play an important role in Tebuconazol toxicity. The study has generated new data that will help to understand how fungicides behave in the environment.
Asunto(s)
Fungicidas Industriales , Potencial de la Membrana Mitocondrial , Triazoles , Triazoles/toxicidad , Humanos , Fungicidas Industriales/toxicidad , Células Hep G2 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacosRESUMEN
Coniella granati, the causal agent of pomegranate crown rot, twig blight, and fruit decay, is an emerging worldwide pathogen with a heavy impact on pomegranate cultivation. In this study, we report the rapid spread of the fungus in Italian pomegranate orchards associated with crown rot symptoms and provide new results on fungal development, baseline sensitivity to different fungicides, and intraspecific variability by analyzing 11 isolates, representative of populations of the pathogen from comparable pomegranate orchards in different regions of Italy. In vitro assays showed that 25 to 30°C was the optimal range for both colony growth and conidial germination, corroborating the results previously obtained for Californian and Greek isolates. According to the baseline sensitivity assay on the response of colony growth and conidial germination to 10 fungicides, fludioxonil, thiophanate-methyl, tebuconazole, and cyprodinil were the most effective. Random amplified polymorphic DNA (RAPD) analysis, carried out using fourteen 10-mer primers, showed very low intraspecific variability (similarity coefficient >0.95), probably as a result of the recent spread of the pathogen in Italy and the uncommon occurrence of the sexual process as a source of genetic variability. In summary, this study provides new knowledge on C. granati that will be helpful for improving pomegranate crown rot management.
Asunto(s)
Ascomicetos , Fungicidas Industriales , Granada (Fruta) , Frutas/microbiología , Fungicidas Industriales/farmacología , Técnica del ADN Polimorfo Amplificado Aleatorio , ItaliaRESUMEN
Infection of grapevines by fungal pathogens causing grapevine trunk diseases (GTDs) primarily arises from annual pruning wounds made during the dormant season. While various studies have showcased the efficacy of products in shielding pruning wounds against GTD infections, most of these investigations hinge on artificial pathogen inoculations, which may not faithfully mirror real field conditions. This study aimed to evaluate and compare the efficacy of various liquid formulation fungicides (pyraclostrobin + boscalid) and paste treatments, as well as biological control agents (BCA: Trichoderma atroviride SC1, T. atroviride I-1237, and T. asperellum ICC012 + T. gamsii ICC080), for their potential to prevent natural infection of grapevine pruning wounds by trunk disease fungi in two field trials located in Samaniego (Northern Spain) and Madiran (Southern France) over three growing seasons. Wound treatments were applied immediately after pruning in February. One year after pruning, canes were harvested from vines and brought to the laboratory for assessment of Trichoderma spp. and fungal trunk pathogens. More than 1,200 fungal isolates associated with five GTDs (esca, Botryosphaeria, Diaporthe and Eutypa diebacks, and Cytospora canker) were collected from the two vineyards each growing season. Our findings reveal that none of the products under investigation exhibited complete effectiveness against all the GTDs. The efficacy of these products was particularly influenced by the specific year of study. A notable exception was observed with the biocontrol agent T. atroviride I-1237, which consistently demonstrated effectiveness against Botryosphaeria dieback infections throughout each year of the study, irrespective of the location. The remaining products exhibited efficacy in specific years or locations against particular diseases, with the physical barrier (paste) showing the least overall effectiveness. The recovery rates of Trichoderma spp. in treated plants were highly variable, ranging from 17 to 100%, with both strains of T. atroviride yielding the highest isolation rates. This study underscores the importance of customizing treatments for specific diseases, taking into account the influence of environmental factors for BCA applications.
Asunto(s)
Fungicidas Industriales , Enfermedades de las Plantas , Vitis , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fungicidas Industriales/farmacología , Estrobilurinas/farmacología , Agentes de Control Biológico/farmacología , Compuestos de Bifenilo/farmacología , Pirazoles/farmacología , Hypocreales/fisiología , España , Francia , Trichoderma/fisiología , Niacinamida/análogos & derivadosRESUMEN
Cercospora leaf blight (CLB) of soybean, caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is an economically important disease in the southern United States. Cultivar resistance to CLB is inconsistent; therefore, fungicides in the quinone outside inhibitor (QoI) class have been relied on to manage the disease. Approximately 620 isolates from plants exhibiting CLB were collected between 2018 and 2021 from 19 locations in eight southern states. A novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on two genes, calmodulin and histone h3, was developed to differentiate between the dominant species of Cercospora, C. cf. flagellaris, and C. cf. sigesbeckiae. A multilocus phylogenetic analysis of actin, calmodulin, histone h3, ITS rDNA, and transcription elongation factor 1-α was used to confirm PCR-RFLP results and identify remaining isolates. Approximately 80% of the isolates collected were identified as C. cf. flagellaris, while 15% classified as C. cf. sigesbeckiae, 2% as C. kikuchii, and 3% as previously unreported Cercospora species associated with CLB in the United States. PCR-RFLP of cytochrome b (cytb) identified QoI-resistance conferred by the G143A substitution. Approximately 64 to 83% of isolates were determined to be QoI-resistant, and all contained the G143A substitution. Results of discriminatory dose assays using azoxystrobin (1 ppm) were 100% consistent with PCR-RFLP results. To our knowledge, this constitutes the first report of QoI resistance in CLB pathogen populations from Alabama, Arkansas, Kentucky, Mississippi, Missouri, Tennessee, and Texas. In areas where high frequencies of resistance have been identified, QoI fungicides should be avoided, and fungicide products with alternative modes-of-action should be utilized in the absence of CLB-resistant soybean cultivars.
Asunto(s)
Ascomicetos , Fungicidas Industriales , Estados Unidos , Fungicidas Industriales/farmacología , Cercospora , Glycine max , Filogenia , Calmodulina/genética , Histonas/genética , Arkansas , QuinonasRESUMEN
Heart rot disease, caused by Lasiodiplodia theobromae, is destructive for date palms and other woody plants. The disease was reported in several oases in Egypt, and the pathogen was found in association with infected trees suffering dieback and rachis blight. Seven phylogenetically distinct fungal isolates were selected, and their pathogenicity was confirmed on date palms. The isolates exhibited variable degrees of virulence on inoculated leaves, which confirms the variation. We examined the antifungal effect of microbial bioagents and plant extracts on heart rot disease. The isolates of Trichoderma spp. gave moderate reduction of the pathogen's linear growth (40 to 60%), whereas their exudates were ultimately ineffective. Bacillus spp. isolates, except for B. megaterium, were more effective against spore germination, giving 80 to 90% reduction on average. Among the examined plant extracts, garlic sap gave 98.67% reduction of linear growth followed by artemisia (15.5%) and camphor (24.8%). The extraction methods greatly influenced the antifungal efficiency of each extract because exposure to organic solvents significantly decreased the efficiency of all extracts, whereas hot water extraction negatively affected garlic sap only. Successful bioagents and plant extracts were further assayed for the suppression of heart rot disease on date palms. Both T. album and T. harzianum gave comparable degrees of suppression as by commercial fungicides. In addition, treatment before or during pathogen inoculation was the most effective because it significantly enhanced the expression of defense-related enzymes. Our findings suggest biopesticides possess a dual role in disease suppression and defense boosters for date palms suffering heart rot disease.
RESUMEN
Pecan is a valuable nut crop cultivated in the southeastern US. Among the major yield-limiting factors in the region is scab, caused by the plant pathogenic fungus Venturia effusa. Managing scab in tall trees (15 to 25+ m) in pecan orchards is challenging due to the limitations of getting sufficient spray coverage throughout the canopy. We explored the effects of hedge-pruning on scab in three orchards: 14 m tall cv. Desirable trees winter hedge-pruned on alternate sides to 11 m (site 1), 18 m tall cv. Stuart trees hedge-pruned on both sides simultaneously to 11 m (site 2), and 15 m tall cv. Caddo trees winter hedge-pruned in winter vs. summer to 11 m (site 3). At site 1 and 2 hedge-pruned trees were compared to non-pruned control trees. All trees received recommended fungicide applications to control scab via air-blast sprayer. Disease incidence and/or severity was assessed at different sample heights on shoots, foliage and fruit during three seasons (2020, 2021, and 2022). At site 1 the hedge pruned trees often had significantly or numerically more severe scab on foliage and fruit compared to the control trees, although the differences were mostly small. The frequency of mature fruit with scab severity <10% was greatest on control trees in 2021 and 2022. At site 2, there were few differences between hedge-pruned and control trees (on fruit, scab severity was either significantly less on hedge-pruned trees, or not different to the control), but the frequency of mature fruit with scab severity <10% was consistently greatest on hedge-pruned trees. At site 3, scab intensity was low, and there were no significant differences in scab severity between winter- and summer-pruning treatments. At sites 1 and 2 there was generally more severe scab at greater sample heights compared to low in the canopy. At site 3 there was little effect of height on disease. The benefit of hedge-pruning likely increases with tree height in scab-susceptible cultivars. If a tree is >~15 m tall, a greater proportion of the fruit will be within reach of efficacious spray coverage from air-blast sprayers.
RESUMEN
Invasive candidiasis (IC), caused by Candida yeasts, particularly Candida albicans, poses a significant threat with high mortality rates. Diagnosis is challenging due to Candida's common presence in human microbiota. To address this, our research group developed an immunofluorescence assay detecting Candida albicans Germ Tube Antibodies (CAGTA) in IC patients. CAGTA, indicative of invasive processes, is associated with a lower mortality rate in ICU patients. Based on this premise, this study aims to provide results regarding the lack of knowledge about the potential activity of CAGTA against invasive infections in humans caused by the fungus Candida albicans. Therefore, in order to characterize the activity of CAGTA produced by patients with IC, we used sera from 29 patients with IC caused by either C. albicans or non-albicans Candida species. Whole serum IgG antibodies were fractionated into anti-blastospores, CAGTA-enriched, and purified CAGTA and the assessments included XTT colorimetric assays for metabolic activity, CFU counts for viability, and microscopy for growth, viability, and morphological analysis. The CAGTA-enriched IgG fraction significantly reduced the metabolic activity and viability of C. albicans compared to anti-blastospores. Purified CAGTA altered germ tube cell wall surfaces, as revealed by electron microscopy, and exhibited fungicidal properties by DiBAC fluorescent staining. In conclusion, antibodies in response to invasive candidiasis have antifungal activity against Candida albicans, influencing metabolic activity, viability, and cell wall structure, leading to cell death. These findings suggest the potential utility of CAGTA as diagnostic markers and support the possibility of developing immunization protocols against Candida infections.
Asunto(s)
Candida albicans , Candidiasis Invasiva , Candidiasis , Humanos , Candida , Pared Celular , Anticuerpos Antifúngicos , Inmunoglobulina GRESUMEN
Polyamines (PAs), which are aliphatic polycationic compounds with a low molecular weight, are found in all living organisms and play essential roles in plant-pathogen interactions. Putrescine, spermidine, and spermine, the most common PAs in nature, respond to and function differently in plants and pathogens during their interactions. While plants use certain PAs to enhance their immunity, pathogens exploit PAs to facilitate successful invasion. In this review, we compile recent studies on the roles of PAs in plant-pathogen interactions, providing a comprehensive overview of their roles in both plant defense and pathogen pathogenicity. A thorough understanding of the functions of PAs and conjugated PAs highlights their potential applications in fungicide development. The creation of new fungicides and compounds derived from PAs demonstrates their promising potential for further research and innovation in this field.
Asunto(s)
Fungicidas Industriales , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Plantas , Poliaminas , Poliaminas/metabolismo , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Plantas/metabolismoRESUMEN
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Asunto(s)
Botrytis , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Interferencia de ARN , Botrytis/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Interacciones Huésped-Patógeno/genética , Fungicidas Industriales/farmacologíaRESUMEN
Advancements in polymer science and nanotechnology hold significant potential for addressing the increasing demands of food security, by enhancing the shelf life, barrier properties, and nutritional quality of harvested fruits and vegetables. In this context, biopolymer-based delivery systems present themselves as a promising strategy for encapsulating bioactive compounds, improving their absorption, stability, and functionality. This study provides an exploration of the synthesis, characterization, and postharvest protection applications of nanocarriers formed through the complexation of chitosan oligomers, carboxymethylcellulose, and alginate in a 2:2:1 molar ratio. This complexation process was facilitated by methacrylic anhydride and sodium tripolyphosphate as cross-linking agents. Characterization techniques employed include transmission electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, thermal analysis, and X-ray powder diffraction. The resulting hollow nanospheres, characterized by a monodisperse distribution and a mean diameter of 114 nm, exhibited efficient encapsulation of carvacrol, with a loading capacity of approximately 20%. Their suitability for phytopathogen control was assessed in vitro against three phytopathogens-Botrytis cinerea, Penicillium expansum, and Colletotrichum coccodes-revealing minimum inhibitory concentrations ranging from 23.3 to 31.3 µg·mL-1. This indicates a higher activity compared to non-encapsulated conventional fungicides. In ex situ tests for tomato (cv. 'Daniela') protection, higher doses (50-100 µg·mL-1, depending on the pathogen) were necessary to achieve high protection. Nevertheless, these doses remained practical for real-world applicability. The advantages of safety, coupled with the potential for a multi-target mode of action, further enhance the appeal of these nanocarriers.
Asunto(s)
Quitosano , Cimenos , Solanum lycopersicum , Carboximetilcelulosa de Sodio , AlginatosRESUMEN
Molds pose a severe challenge to agriculture because they cause very large crop losses. For this reason, synthetic fungicides have been used for a long time. Without adequate protection against pests and various pathogens, crop losses could be as high as 30-40%. However, concerns mainly about the environmental impact of synthetic antifungals and human health risk have prompted a search for natural alternatives. But do natural remedies only have advantages? This article reviews the current state of knowledge on the use of antifungal substances in agriculture to protect seeds against phytopathogens. The advantages and disadvantages of using both synthetic and natural fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms of action. The possibilities of an integrated control approach, combining cultural, biological, and chemical methods are described, constituting a holistic strategy for sustainable mold management in the grain industry.
Asunto(s)
Antifúngicos , Grano Comestible , Fungicidas Industriales , Grano Comestible/química , Grano Comestible/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Antifúngicos/farmacología , Antifúngicos/química , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Hongos/efectos de los fármacos , Humanos , Agricultura/métodosRESUMEN
Phytopathogenic fungi cause plant diseases and economic losses in agriculture. To efficiently control plant pathogen infections, a total of 19 spirotryprostatin A derivatives and 26 spirooxindole derivatives were designed, synthesized, and tested for their antifungal activity against ten plant pathogens. Additionally, the intermediates of spirooxindole derivatives were investigated, including proposing a mechanism for diastereoselectivity and performing amplification experiments. The bioassay results demonstrated that spirotryprostatin A derivatives possess good and broad-spectrum antifungal activities. Compound 4d exhibited excellent antifungal activity in vitro, equal to or higher than the positive control ketoconazole, against Helminthosporium maydis, Trichothecium roseum, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium graminearum, Alternaria brassicae, Alternaria alternate, and Fusarium solan (MICs: 8-32 µg/mL). Compound 4k also displayed remarkable antifungal activity against eight other phytopathogenic fungi, including Fusarium oxysporium f. sp. niveum and Mycosphaerella melonis (MICs: 8-32 µg/mL). The preliminary structure-activity relationships (SARs) were further discussed. Moreover, molecular docking studies revealed that spirotryprostatin A derivatives anchored in the binding site of succinate dehydrogenase (SDH). Therefore, these compounds showed potential as natural compound-based chiral fungicides and hold promise as candidates for further enhancements in terms of structure and properties.
Asunto(s)
Antifúngicos , Benzopiranos , Fungicidas Industriales , Nitrilos , Oxindoles , Piperazinas , Compuestos de Espiro , Antifúngicos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Fungicidas Industriales/farmacologíaRESUMEN
Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.
Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Bencimidazoles/farmacología , Bencimidazoles/metabolismo , Carbamatos/farmacología , Tiofanato , AntibacterianosRESUMEN
This study analysed basidiomycetous yeasts isolated from the phylloplane of crops and spontaneous plants in Italian agroecosystems. A total of 25 species belonging to 17 genera were recognized by analysing 83 isolates from vineyards and orchards, that are not treated with synthetic fungicides, and adjacent natural areas. Rhodotorula graminis and Filobasidium magnum were the most frequent species but 13 others were represented by a single isolate (e.g., Buckleyzyma salicina, Pseudozyma prolifica, and Moniliella megachiliensis). Preliminary analysis of (GTG)5-PCR fingerprinting revealed high genetic intraspecific heterogeneity. All isolates were characterized by their production of extracellular hydrolytic enzymes and their sensitivity to six commercial fungicides used in Italy. The isolates displayed great variability in these phenotypic traits, which play an important role in the survival of yeast populations in agroecosystems. Most of them exhibited lipolytic, proteolytic, ß-glucosidase and pectinolytic activities, but only three (F. magnum, Kwoniella mangroviensis and Ps. prolifica) also had cellulolytic and amylolytic activity. Most isolates were sensitive to four fungicides, and one R. graminis isolate was resistant to all six. This heterogeneity was not related to the geographical origin of the isolates. The lack of selective factors (i.e. pesticide treatments) in the sampling fields and the presence of adjacent natural areas may have favored the maintenance of an elevated level of strain diversity. This study provides new information on phylloplane basidiomycetous yeasts in agroecosystems and opens the way to further investigations into the impact of agricultural practices on the microbial diversity of these natural habitats.