Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 198: 105760, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225067

RESUMEN

Corynespora leaf spot, caused by Corynespora cassiicola, is a foliar disease in cucumber. While the application of quinone outside inhibitors (QoIs) is an effective measure for disease control, it carries the risk of resistance development. In our monitoring of trifloxystrobin resistance from 2008 to 2020, C. cassiicola isolates were categorized into three populations: sensitive isolates (S, 0.01 < EC50 < 0.83 µg/mL), moderately resistant isolates (MR, 1.18 < EC50 < 55.67 µg/mL), and highly resistant isolates (HR, EC50 > 56.98 µg/mL). The resistance frequency reached up to 90% during this period, with an increasing trend observed in the annual average EC50 values of all the isolates. Analysis of the CcCytb gene revealed that both MR and HR populations carried the G143A mutation. Additionally, we identified mitochondrial heterogeneity, with three isolates carrying both G143 and A143 in MR and HR populations. Interestingly, isolates with the G143A mutation (G143A-MR and G143A-HR) displayed differential sensitivity to QoIs. Further experiments involving gene knockout and complementation demonstrated that the major facilitator superfamily (MFS) transporter (CcMfs1) may contribute to the disparity in sensitivity to QoIs between the G143A-MR and G143A-HR populations. However, the difference in sensitivity caused by the CcMfs1 transporter is significantly lower than the differences observed between the two populations. This suggests additional mechanisms contributing to the variation in resistance levels among C. cassiicola isolates. Our study highlights the alarming level of trifloxystrobin resistance in C. cassiicola in China, emphasizing the need for strict prohibition of QoIs use. Furthermore, our findings shed light on the occurrence of both target and non-target resistance mechanisms associated with QoIs in C. cassiicola.


Asunto(s)
Acetatos , Ascomicetos , Fungicidas Industriales , Iminas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas
2.
Plant Dis ; 105(6): 1771-1780, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33135989

RESUMEN

The long-term dynamics of fungicide resistance of the rice blast fungus Pyricularia oryzae was monitored by examining the reaction of the fungal field isolates, collected over a period of 26 years, to the active ingredients of commercially relevant fungicides. The in vitro sensitivity of all isolates was measured against quinone outside inhibitors (QoI), melanin biosynthesis inhibitors, and sterol demethylation inhibitor (DMI) fungicides, namely azoxystrobin (as a QoI), tricyclazole (as a melanin biosynthesis inhibitor), tebuconazole (as a DMI), and trifloxystrobin + tebuconazole (QoI + DMI). Over the 26-year collection period, a gradual rise in the EC50 estimates for mycelial growth sensitivity was observed for all fungicides, but most strikingly for azoxystrobin. A rise in conidial germination and appressorium formation was also noted, most markedly for azoxystrobin. Consistently, the earlier isolates were much more sensitive to the active ingredients than the more contemporary isolates. The sequencing of the amplified cyt b fragment distinguished two haplotypes, H1 and H2. Haplotype H1 (six isolates) contained the G to C transversion at codon 143 (resulting in change G143A), linked to the resistant phenotype QoI-R. Haplotype H2 (40 isolates), gathered the isolates sensitive to QoI. This work documents the gradual rise in the frequency of fungicide-resistant isolates in P. oryzae rice populations on a long-term basis.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Ascomicetos/genética , Brasil , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología
3.
Environ Sci Pollut Res Int ; 25(1): 469-478, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29043591

RESUMEN

The saprotrophic fungus Alternaria alternata is widespread in the agro-environment and produces more than ten allergenic proteins, mostly protein Alt a 1. The frequency of the Alt a 1 gene was analyzed in a group of A. alternata isolates from winter wheat kernels obtained in Poland, and the effectiveness of various fungicides targeting the pathogen was evaluated. The Alt a 1 gene was identified in four of the seven tested isolates. A. alternata colonized 35.67% kernels on average, but its frequency increased in stored grain where the presence of epiphytes was noted on 23.09 to 51.38% kernels, and endophytes-in 26.21 to 42.01% of kernels. The efficacy of field-applied fungicides did not exceed 50%, despite the fact that A. alternata is highly sensitive to propiconazole, fenpropimorph, and tebuconazole under in vitro conditions. The analyzed isolates were characterized by limited sensitivity to azoxystrobin (EC50 ranged from 0.505 to 1.350 µg cm-3) due to a mutation at codon 143 of the CYT b gene, responsible for resistance to quinone outside inhibitor fungicides, which was noted in all isolates. The spread of A. alternata can be effectively controlled with suitable fungicides and by monitoring the prevalence of pathogenic isolates in the environment.


Asunto(s)
Alérgenos/genética , Alternaria/genética , Citocromos b/genética , Fungicidas Industriales/farmacología , Mutación , Pirimidinas/farmacología , Estrobilurinas/farmacología , Alérgenos/efectos de los fármacos , Alérgenos/aislamiento & purificación , Alternaria/efectos de los fármacos , Alternaria/aislamiento & purificación , Farmacorresistencia Fúngica , Polonia , Triticum/microbiología
4.
Front Plant Sci ; 8: 1165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713416

RESUMEN

Ascochyta blight (AB) of pulse crops (chickpea, field pea, and lentils) causes yield loss in Montana, where 1.2 million acres was planted to pulses in 2016. Pyraclostrobin and azoxystrobin, quinone outside inhibitor (QoI) fungicides, have been the choice of farmers for the management of AB in pulses. However, a G143A mutation in the cytochrome b gene has been reported to confer resistance to QoI fungicides. A total of 990 isolates of AB-causing fungi were isolated and screened for QoI resistance. Out of these, 10% were isolated from chickpea, 81% were isolated from field peas, and 9% isolated from lentil. These were from a survey of grower's fields and seed lots (chickpea = 17, field pea = 131, and lentil = 21) from 23 counties in Montana sent to the Regional Pulse Crop Diagnostic Laboratory, Bozeman, MT, United States for testing. Fungicide-resistant Didymella rabiei isolates were found in one chickpea seed lot each sent from Daniels, McCone and Valley Counties, MT, from seed produced in 2015 and 2016. Multiple alignment analysis of amino acid sequences showed a missense mutation that replaced the codon for amino acid 143 from GGT to GCT, introducing an amino acid change from glycine to alanine (G143A), which is reported to be associated with QoI resistance. Under greenhouse conditions, disease severity was significantly higher on pyraclostrobin-treated chickpea plants inoculated with QoI-resistant isolates of D. rabiei than sensitive isolates (p-value = 0.001). This indicates that where resistant isolates are located, fungicide failures may be observed in the field. D. rabiei-specific polymerase chain reaction primer sets and hydrolysis probes were developed to efficiently discriminate QoI- sensitive and - resistant isolates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA