Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Inherit Metab Dis ; 43(1): 14-24, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691304

RESUMEN

It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.


Asunto(s)
Enzimas/metabolismo , Enzimas/fisiología , Redes y Vías Metabólicas/fisiología , Errores Innatos del Metabolismo/prevención & control , Metabolismo/fisiología , Encefalopatías Metabólicas Innatas/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Neutropenia/metabolismo
2.
Clin Genet ; 93(2): 350-355, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28685844

RESUMEN

Glycogen storage disease (GSD) type I is inborn metabolic disease characterized by accumulation of glycogen in multiple organs. We analyzed 38 patients with clinical suspicion of GSD I using Sanger and next-generation sequencing (NGS). We identified 28 GSD Ib and 5 GSD Ia patients. In 5 patients, GSD III, VI, IX, cholesteryl-ester storage disease and Shwachman-Diamond syndrome diagnoses were set using NGS. Incidences for GSD Ia and GSD Ib were estimated at 1:172 746 and 1:60 461 live-births, respectively. Two variants were identified in G6PC gene: c.247C>T (p.Arg83Cys) and c.518T>C (p.Leu173Pro). In SLC37A4 gene, 6 variants were detected. Three previously reported variants c.81T>A (p.Asn27Lys), c.162C>A (p.Ser54Arg) and c.1042_1043delCT (p.Leu348Valfs*53) accounted for 87% of all analyzed alleles. Computational, transcription studies and/or clinical presentation in patients confirmed pathogenic effect of 3 novel variants: c.248G>A (p.Gly83Glu), c.404G>A (p.Gly135Asp) and c.785G>A (p.Ser263Glyfs*33 or p.Gly262Asp). In the cohort, hepatomegaly, hypoglycemia and failure to thrive were the most frequent presenting signs of GSD Ia, while hepatomegaly and recurrent bacterial infections were clinical hallmarks of GSD Ib. All GSD Ib patients developed neutropenia while 20.6% developed inflammatory bowel disease. Our study revealed the highest worldwide incidence of GSD Ib. Furthermore, description of 3 novel variants will facilitate medical genetic practice.


Asunto(s)
Antiportadores/genética , Genética de Población , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Proteínas de Transporte de Monosacáridos/genética , Alelos , Niño , Preescolar , Femenino , Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Humanos , Lactante , Masculino , Mutación , Fenotipo , Serbia/epidemiología
3.
Cell Biochem Funct ; 35(5): 269-277, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28749080

RESUMEN

Glucocorticoids are important for skeletal muscle energy metabolism, regulating glucose utilization, insulin sensitivity, and muscle mass. Nicotinamide adenine dinucleotide phosphate-dependent 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1)-mediated glucocorticoid activation in the sarcoplasmic reticulum (SR) is integral to mediating the detrimental effects of glucocorticoid excess in muscle. 11ß-Hydroxysteroid dehydrogenase type 1 activity requires glucose-6-phosphate transporter (G6PT)-mediated G6P transport into the SR for its metabolism by hexose-6-phosphate dehydrogenase (H6PDH) for NADPH generation. Here, we examine the G6PT/H6PDH/11ß-HSD1 triad in differentiating myotubes and explore the consequences of muscle-specific knockout of 11ß-HSD1 and H6PDH. 11ß-Hydroxysteroid dehydrogenase type 1 expression and activity increase with myotube differentiation and in response to glucocorticoids. Hexose-6-phosphate dehydrogenase shows some elevation in expression with differentiation and in response to glucocorticoid, while G6PT appears largely unresponsive to these particular conditions. When examining 11ß-HSD1 muscle-knockout mice, we were unable to detect significant decrements in activity, despite using a well-validated muscle-specific Cre transgene and confirming high-level recombination of the floxed HSD11B1 allele. We propose that the level of recombination at the HSD11B1 locus may be insufficient to negate basal 11ß-HSD1 activity for a protein with a long half-life. Hexose-6-phosphate dehydrogenase was undetectable in H6PDH muscle-knockout mice, which display the myopathic phenotype seen in global KO mice, validating the importance of SR NADPH generation. We envisage these data and models finding utility when investigating the muscle-specific functions of the 11ß-HSD1/G6PT/H6PDH triad.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Antiportadores/genética , Deshidrogenasas de Carbohidratos/genética , Proteínas de Transporte de Monosacáridos/genética , Músculo Esquelético/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Antiportadores/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Metabolismo Energético/genética , Glucocorticoides/genética , Glucocorticoides/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1265698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034009

RESUMEN

Background: Glycogen plays an important role in glucose homeostasis and contributes to key functions related to brain cancer cell survival in glioblastoma multiforme (GBM) disease progression. Such adaptive molecular mechanism is dependent on the glycogenolytic pathway and intracellular glucose-6-phosphate (G6P) sensing by brain cancer cells residing within those highly hypoxic tumors. The involvement of components of the glucose-6-phosphatase (G6Pase) system remains however elusive. Objective: We questioned the gene expression levels of components of the G6Pase system in GBM tissues and their functional impact in the control of the invasive and brain cancer stem cells (CSC) phenotypes. Methods: In silico analysis of transcript levels in GBM tumor tissues was done by GEPIA. Total RNA was extracted and gene expression of G6PC1-3 as well as of SLC37A1-4 members analyzed by qPCR in four human brain cancer cell lines and from clinically annotated brain tumor cDNA arrays. Transient siRNA-mediated gene silencing was used to assess the impact of TGF-ß-induced epithelial-to-mesenchymal transition (EMT) and cell chemotaxis. Three-dimensional (3D) neurosphere cultures were generated to recapitulate the brain CSC phenotype. Results: Higher expression in G6PC3, SLC37A2, and SLC37A4 was found in GBM tumor tissues in comparison to low-grade glioma and healthy tissue. The expression of these genes was also found elevated in established human U87, U251, U118, and U138 GBM cell models compared to human HepG2 hepatoma cells. SLC37A4/G6PC3, but not SLC37A2, levels were induced in 3D CD133/SOX2-positive U87 neurospheres when compared to 2D monolayers. Silencing of SLC37A4/G6PC3 altered TGF-ß-induced EMT biomarker SNAIL and cell chemotaxis. Conclusion: Two members of the G6Pase system, G6PC3 and SLC37A4, associate with GBM disease progression and regulate the metabolic reprogramming of an invasive and CSC phenotype. Such molecular signature may support their role in cancer cell survival and chemoresistance and become future therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Antiportadores/genética , Antiportadores/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Células Madre Neoplásicas/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo
5.
Mol Genet Metab Rep ; 34: 100955, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632325

RESUMEN

Background: Glycogen storage disease type Ib (GSD Ib) is an autosomal recessively inherited deficiency of the glucose-6-phosphate translocase (G6PT). Clinical features include a combination of a metabolic phenotype (fasting hypoglycemia, lactic acidosis, hepatomegaly) and a hematologic phenotype with neutropenia and neutrophil dysfunction. Dietary treatment involves provision of starches such as uncooked cornstarch (UCCS) and Glycosade® to provide prolonged enteral supply of glucose. Granulocyte colony-stimulating factor (G-CSF) is the treatment of choice for neutropenia. Because long-term stimulation of hematopoiesis with G-CSF causes serious complications such as splenomegaly, hypersplenism, and osteopenia; hematopoietic stem cell transplantation (HSCT) has been considered in some patients with GSD Ib to correct neutropenia and avoid G-CSF related adverse effects. Whether HSCT also has an effect on the metabolic phenotype and utilization of carbohydrate sources has not been determined. Objective: Our objective was to measure the utilization of starch in a patient with GSD Ib before and after HSCT using the minimally invasive 13C-glucose breath test (13C-GBT). Design: A case of GSD Ib (18y; female) underwent 13C-GBT four times: UCCS (pre-HSCT), UCCS (3, 5 months post-HSCT) and Glycosade® (6 months post-HSCT) with a dose of 80 g administered via nasogastric tube after a 4 h fast according to our patient's fasting tolerance. Breath samples were collected at baseline and every 30 min for 240 min. Rate of CO2 production was measured at 120 min using indirect calorimetry. Finger-prick blood glucose was measured using a glucometer hourly to test hypoglycemia (glucose <4 mmol/L). Biochemical and clinical data were obtained from the medical records as a post-hoc chart review. Results: UCCS utilization was significantly higher in GSD Ib pre-HSCT, which reduced and stabilized 5 months post-HSCT. UCCS and Glycosade® utilizations were low and not different at 5 and 6 months post-HSCT. Blood glucose concentrations were not significantly different at any time point. Conclusions: Findings show that HSCT stabilized UCCS utilization, as reflected by lower and stable glucose oxidation. The results also illustrate the application of 13C-GBT to examine glucose metabolism in response to various carbohydrate sources after other treatment modalities like HSCT in GSD Ib.

6.
Mol Genet Genomic Med ; 9(1): e1568, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280276

RESUMEN

BACKGROUND: Glycogen storage disease (GSD) type Ib is an autosomal recessive disease caused by defects of glucose-6-phosphate transporter (G6PT), encoded by the SLC37A4 gene. To date, over 100 mutations have been revealed in the SLC37A4 gene. GSD-Ib patients manifest a metabolic phenotype of impaired blood glucose homeostasis and also carry the additional complications of neutropenia and myeloid dysfunction. METHODS: Here, we present two daughters with an initial diagnosis of gout in a Chinese consanguineous family. Whole-exome sequencing was performed to identify the mutations. The mechanism of leukocytopenia was investigated. RESULTS: Whole-exome sequencing analysis of the proband identified a novel homozygous p.P119L mutation in SLC37A4, leading to a diagnosis of GSD-Ib. We found that the potential pathogenic p.P119L mutation leads to an unusual phenotype characterized by gout at onset, and GSD-Ib arising from this variant also manifests multiple metabolic abnormalities, leukocytopenia, and anemia, but no hepatomegaly. The leukocytes from the proband showed increased mRNA levels of sXBP-1, BIP, and CHOP genes in the unfolded protein response pathway, and enhanced Bax mRNA and caspase-3 activity, which might contribute to leukocytopenia. CONCLUSION: Our findings broaden the variation spectrum of SLC37A4 and suggest no strict genotype-phenotype correlations in GSD-Ib patients.


Asunto(s)
Antiportadores/genética , Apoptosis , Estrés del Retículo Endoplásmico , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Gota/genética , Leucopenia/genética , Proteínas de Transporte de Monosacáridos/genética , Adulto , Células Cultivadas , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Gota/patología , Humanos , Leucocitos/metabolismo , Leucopenia/patología , Hígado/patología , Mutación Missense , Linaje , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
7.
JIMD Rep ; 58(1): 122-128, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33728255

RESUMEN

Recently, a disorder caused by the heterozygous de novo c.1267C>T (p.R423*) substitution in SLC37A4 has been described. This causes mislocalization of the glucose-6-phosphate transporter to the Golgi leading to a congenital disorder of glycosylation type II (SLC37A4-CDG). Only one patient has been reported showing liver disease that improved with age and mild dysmorphism. Here we report the second patient with a type II CDG caused by the same heterozygous de novo c.1267C>T (p.R423*) mutation thereby confirming the pathogenicity of this variant and expanding the clinical picture with type 1 diabetes, severe scoliosis, and membranoproliferative glomerulonephritis. Additional clinical and biochemical data provide further insight into the mechanism and prognosis of SLC37A4-CDG.

8.
Mol Genet Metab Rep ; 29: 100813, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712576

RESUMEN

Glycogen Storage Disease type 1b (GSDIb) is a genetic disorder with long term severe complications. Accumulation of the glucose analog 1,5-anhydroglucitol-6-phosphate (1,5AG6P) in neutrophils inhibits the phosphorylation of glucose in these cells, causing neutropenia and neutrophil dysfunctions. This condition leads to serious infections and inflammatory bowel disease (IBD) in GSDIb patients. We show here that dapagliflozin, an inhibitor of the renal sodium-glucose co-transporter-2 (SGLT2), improves neutrophil function in an inducible mouse model of GSDIb by reducing 1,5AG6P accumulation in myeloid cells.

9.
Mol Genet Metab Rep ; 23: 100581, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32300528

RESUMEN

Glycogenosis type Ib (GSD1B) causes not only hypoglycemia but also infections and "Crohn's disease like" inflammatory bowel disease (IBD) that can significantly impair patient's quality of life. We retrospectively evaluated infectious and digestive complications in 9 French patients (3 girls, 6 boys) diagnosed at 0.8 years on average, with a mean follow-up of 19.1 years. Infections occurred earlier than IBD, at mean ages of 1.7 and 3.8 years, respectively. The number of acute hospitalizations was 0.7/year due to infectious (0.4/year) or digestive symptoms (0.4/year). Clinical presentations allowed separating patients into mild (n = 5) and severe (n = 4) intestinal involvement. Patients in the severe group had more serious digestive symptoms but also earlier neutropenia (median 0.3 vs. 1.5 years, p =0 .046) with a tendency to a lower neutrophil count (NC) during follow-up, and a higher number of acute hospitalizations (median 1.3/year vs. 0.2/year, p =0 .014) due to digestive symptoms (median 0.6/year vs. 0.05/year, p = 0,012) and infections (median 0.8/year vs. 0.2/year, p =0 .014). Treatments included G-CSF and cotrimoxazole (n = 7), 5-aminosalicylic acid (n = 2), and a polymeric solution enriched in the anti-inflammatory cytokine TGF-ß (n = 4, "severe" group), and immunomodulatory treatment (n = 1). In conclusion, infections and IBD are rare but severe complications in GSD1B. Neutropenia tended to be more prevalent in the severe IBD group than in the mild IBD group. Dietetic treatment with specific anti-inflammatory solutions seems particularly appropriate in these patients.

10.
Front Chem ; 6: 122, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719821

RESUMEN

The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-ß to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-ß are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-ß is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.

12.
FEBS Lett ; 589(16): 2100-9, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25982172

RESUMEN

Autophagy is a catabolic process involving autophagosome formation via lysosome. However, the initiation step of autophagy is largely unknown. We found an interaction between ULK1 and ATG9 in mammalian cells and utilized the interaction to identify novel regulators of autophagy upstream of ULK1. We established a cell-based screening assay employing bimolecular fluorescence complementation. By performing gain-of-function screening, we identified G6PT as an autophagy activator. G6PT enhanced the interaction between N-terminal Venus-tagged ULK1 and C-terminal Venus-tagged ATG9, and increased autophagic flux independent of its transport activity. G6PT negatively regulated mTORC1 activity, demonstrating that G6PT functions upstream of mTORC1 in stimulating autophagy.


Asunto(s)
Antiportadores/metabolismo , Autofagia , Hepatocitos/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monosacáridos/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Fagosomas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Regulación hacia Arriba , Sustitución de Aminoácidos , Animales , Antiportadores/antagonistas & inhibidores , Antiportadores/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Línea Celular , Cricetulus , Hepatocitos/citología , Hepatocitos/enzimología , Humanos , Proteína Huntingtina , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fagosomas/enzimología , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Mol Genet Metab Rep ; 3: 28-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26937391

RESUMEN

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70-90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc (-/-) mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy. We show that rAAV-treated G6pc (-/-) mice expressing 0.2% of wild-type hepatic G6Pase-α activity suffered from frequent hypoglycemic seizures at age 63-65 weeks but mice expressing 0.5-1.3% of wild-type hepatic G6Pase-α activity (AAV-LL mice) sustain 4-6 h of fast and grow normally to age 75-90 weeks. Despite marked increases in hepatic glycogen accumulation, the AAV-LL mice display no evidence of hepatic abnormalities, hepatic steatosis, or HCA. Interprandial glucose homeostasis is maintained by the G6Pase-α/glucose-6-phosphate transporter (G6PT) complex, and G6PT-mediated microsomal G6P uptake is the rate-limiting step in endogenous glucose production. We show that hepatic G6PT activity is increased in AAV-LL mice. These findings are encouraging for clinical studies of G6Pase-α gene-based therapy for GSD-Ia.

14.
Gene ; 536(2): 362-5, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24355556

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive genetic disorder resulting in hypoglycemia, hepatomegaly and growth retardation. It is caused by mutations in the G6PC gene encoding Glucose-6-phosphatase. To date, over 80 mutations have been identified in the G6PC gene. Here we reported a novel mutation found in a Chinese patient with abnormal transaminases, hypoglycemia, hepatomegaly and short stature. Direct sequencing of the coding region and splicing-sites in the G6PC gene revealed a novel no-stop mutation, p.*358Yext*43, leading to a 43 amino-acid extension of G6Pase. The expression level of mutant G6Pase transcripts was only 7.8% relative to wild-type transcripts. This mutation was not found in 120 chromosomes from 60 unrelated healthy control subjects using direct sequencing, and was further confirmed by digestion with Rsa I restriction endonuclease. In conclusion, we revealed a novel no-stop mutation in this study which expands the spectrum of mutations in the G6PC gene. The molecular genetic analysis was indispensable to the diagnosis of GSD-Ia for the patient.


Asunto(s)
Pueblo Asiatico/genética , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Mutación/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Línea Celular , Niño , Chlorocebus aethiops/genética , Femenino , Homocigoto , Humanos , Datos de Secuencia Molecular , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA