Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 490-501.e16, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31955848

RESUMEN

Integrin αvß8 binds with exquisite specificity to latent transforming growth factor-ß (L-TGF-ß). This binding is essential for activating L-TGF-ß presented by a variety of cell types. Inhibiting αvß8-mediated TGF-ß activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvß8 ectodomain and its intact natural ligand, L-TGF-ß, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvß8 binding specificity and TGF-ß activation. Our studies reveal a mechanism of TGF-ß activation where mature TGF-ß signals within the confines of L-TGF-ß and the release and diffusion of TGF-ß are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvß8-mediated L-TGF-ß activation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Integrinas/química , Integrinas/metabolismo , Proteínas de Unión a TGF-beta Latente/química , Proteínas de Unión a TGF-beta Latente/metabolismo , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Anticuerpos/inmunología , Sitios de Unión , Bronquios/citología , Células CHO , Cricetulus , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Integrinas/inmunología , Activación de Linfocitos , Masculino , Visón , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Linfocitos T Reguladores/inmunología
2.
Proc Natl Acad Sci U S A ; 119(22): e2204402119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613049

RESUMEN

Transcriptional regulation of differentiation is critical for parasitic pathogens to adapt to environmental changes and regulate transmission. In response to encystation stimuli, Giardia lamblia shifts the distribution of the cell cycle toward G2 and induces the expression of cyst wall proteins (CWPs) within 2 to 4 h, indicating that key regulatory steps occur within the first 4 h of encystation. However, the role of transcription factors (TFs) in encystation has primarily been investigated at later time points. How TFs initiate encystation and link it to the cell cycle remains enigmatic. Here, we systematically screened six putative early up-regulated TFs for nuclear localization, established their dynamic expression profiles, and determined their functional role in regulating encystation. We found a critical repressor, Golden2, ARR-B, Psr-1­like protein 1 (GARP)­like protein 4 (GLP4), that increases rapidly after 30 min of encystation stimuli and down-regulates encystation-specific markers, including CWPs and enzymes in the cyst N-acetylgalactosamine pathway. Depletion of GLP4 increases cyst production. Importantly, we observe that G2+M cells exhibit higher levels of CWP1, resulting from the activation of myeloblastosis domain protein 2 (MYB2), a TF previously linked to encystation in Giardia. GLP4 up-regulation occurs in G1+S cells, suggesting a role in repressing MYB2 and encystation-specific genes in the G1+S phase of the cell cycle. Furthermore, we demonstrate that depletion of GLP4 up-regulates MYB2 and promotes encystation while overexpression of GLP4 down-regulates MYB2 and represses encystation. Together, these results suggest that Giardia employs a dose-dependent transcriptional response that involves the cell-cycle­regulated repressor GLP4 to orchestrate MYB2 and entry into the encystation pathway.


Asunto(s)
Giardia lamblia , Enquistamiento de Parásito , Proteínas Protozoarias , Proteínas Represoras , Transactivadores , Ciclo Celular/genética , Diferenciación Celular/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo , Enquistamiento de Parásito/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética
3.
Traffic ; 23(12): 568-586, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36353974

RESUMEN

Both constitutive and regulated secretion require cell organelles that are able to store and release the secretory cargo. During development, the larval salivary gland of Drosophila initially produces high amount of glue-containing small immature secretory granules, which then fuse with each other and reach their normal 3-3.5 µm in size. Following the burst of secretion, obsolete glue granules directly fuse with late endosomes or lysosomes by a process called crinophagy, which leads to fast degradation and recycling of the secretory cargo. However, hindering of endosome-to-TGN retrograde transport in these cells causes abnormally small glue granules which are not able to fuse with each other. Here, we show that loss of function of the SNARE genes Syntaxin 16 (Syx16) and Synaptobrevin (Syb), the small GTPase Rab6 and the GARP tethering complex members Vps53 and Scattered (Vps54) all involved in retrograde transport cause intense early degradation of immature glue granules via crinophagy independently of the developmental program. Moreover, silencing of these genes also provokes secretory failure and accelerated crinophagy during larval development. Our results provide a better understanding of the relations among secretion, secretory granule maturation and degradation and paves the way for further investigation of these connections in other metazoans.


Asunto(s)
Drosophila , Vesículas Secretoras , Animales , Larva , Vesículas Secretoras/metabolismo , Aparato de Golgi/metabolismo , Glándulas Salivales/metabolismo
4.
Mol Biol Rep ; 51(1): 500, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598005

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic gastrointestinal (GI) condition comprising Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis involves immune system dysregulation, with increased Th (T helper cell)17 cells and reduced regulatory T cell (Treg) differentiation. Transforming growth factor-ß (TGF-ß) secretion from Tregs helps control inflammation, and its production is regulated by glycoprotein-A repetition predominant (GARP) protein along with non-coding RNAs (ncRNAs) like microRNA(miR)-142-3p and metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNAs (LncRNAs). This study analyzed their expression in IBD. METHODS: Blood samples were collected from 44 IBD patients, and 22 healthy controls (HC). RNA extraction and circular DNA (cDNA) synthesis were performed. Real-time polymerase chain reaction (RT-PCR) measured gene expression of GARP, MALAT1, and miR-142-3p. Correlations and group differences were statistically analyzed. RESULTS: Compared to controls, GARP was downregulated while MALAT1 and miR-142-3p were upregulated significantly in IBD group. GARP and MALAT1 expressions positively correlated in controls. MALAT1 and miR-142-3p expressions positively correlated in IBD group. MALAT1 was downregulated in aged HC but upregulated with smoking history across groups. No correlations occurred between gene expression and gender, diet, infections, or disease activity scores. CONCLUSIONS: Dysregulation of GARP, MALAT1, and miR-142-3p likely contributes to inflammation in IBD by reducing TGF-ß. MALAT1 is linked to smoking and age-related changes. These genes have potential as diagnostic markers or therapeutic targets for personalized IBD treatment.


Asunto(s)
Enfermedades Inflamatorias del Intestino , MicroARNs , ARN Largo no Codificante , Humanos , Anciano , ARN Largo no Codificante/genética , Enfermedades Inflamatorias del Intestino/genética , Inflamación/genética , Glicoproteínas , MicroARNs/genética , Biomarcadores , Factor de Crecimiento Transformador beta/genética
5.
J Plant Res ; 137(3): 331-341, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38190030

RESUMEN

The GARP (Golden2, ARR-B, Psr1) family proteins with a conserved DNA-binding domain, called the B-motif, are plant-specific transcription factors involved in the regulation of various physiological processes. The GARP family proteins are divided into members that function as monomeric transcription factors, and members that function as transcription factors in the dimeric form, owing to the presence of a coiled-coil dimerization domain. Recent studies revealed that the dimer-forming GARP family members, which are further divided into the PHR1 and NIGT1 subfamilies, play critical roles in the regulation of phosphorus (P) and nitrogen (N) acquisition. In this review, we present a general overview of the GARP family proteins and discuss how several members of the PHR1 and NIGT1 subfamilies are involved in the coordinated acquisition of P and N in response to changes in environmental nutrient conditions, while mainly focusing on the recent findings that enhance our knowledge of the roles of PHR1 and NIGT1 in phosphate starvation signaling and nitrate signaling.


Asunto(s)
Nitrógeno , Fósforo , Factores de Transcripción , Fósforo/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo
6.
J Hepatol ; 79(5): 1214-1225, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348791

RESUMEN

BACKGROUND & AIMS: Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS: The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-ß. Moreover, cell contraction of HSCs in the context of TGF-ß activation was tested in a GARP-dependent fashion. RESULTS: Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-ß and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS: GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-ß. Considering that systemic blockade of TGF-ß has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-ß activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.

7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047041

RESUMEN

The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.


Asunto(s)
Endosomas , Aparato de Golgi , Complejos Multiproteicos , Humanos , Endosomas/metabolismo , Aparato de Golgi/metabolismo
8.
J Fish Biol ; 102(6): 1358-1372, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36928873

RESUMEN

Small yellow croaker (Larimichthys polyactis), a commercially essential fish commonly caught in China and South Korea, is now facing a severe decline in resources. The recruitment and surplus of L. polyactis depend selecting a suitable marine environment for overwintering. However, the international overwintering migration habit of L. polyactis limits the investigation of its overwintering environment preferences and suitable grounds. In this study, based on the distribution data of L. polyactis in the southern Yellow Sea in winter from 2010 to 2019 and ocean remote sensing data such as sea bottom temperature (SBT), sea bottom salinity, chlorophyll-a concentration and water depth (Depth), we used the maximum entropy (MaxEnt) and the genetic algorithm for rule-set production (GARP) models to investigate the overwintering grounds of the southern Yellow Sea stock (SYS). The jackknife test was used to assess the importance of various environmental factors. For modelling the overwintering ground distribution of SYS, the area under the curve values of both models ​were higher than 0.9. The overwintering ground was at 32°10' N-33°48' N, 122°30' E-125°00' E. The direction of its distribution was consistent with the Yellow Sea Warm Current in the southern Yellow Sea during the winter. Compared with the suitable overwintering area during 2010-2014, the highly appropriate overwintering area for SYS to overwinter decreased significantly during 2015-2019, showing a trend of moving to the east and north, related to the increase in fishing pressure and strengthening of the Yellow Sea Warm Current in recent years. Depth was the most significant factor for SYS overwintering, followed by SBT. The overwintering ground was at a depth of 40-65 m during the two periods. Additionally, the suitability of overwintering grounds in the coastal waters of south-western South Korea has gradually increased. This study provides a scientific basis for formulating effective strategies to manage L. polyactis resources under the China-South Korea Fisheries Agreement.


Asunto(s)
Perciformes , Animales , Entropía , Perciformes/genética , China , Explotaciones Pesqueras , Temperatura
9.
Semin Cell Dev Biol ; 101: 123-139, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31879265

RESUMEN

'Jack of all trades, master of everything' is a fair label for transforming growth factor ß1 (TGF-ß) - a cytokine that controls our life at many levels. In the adult organism, TGF-ß1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-ß1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-ß1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-ß1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-ß-signalling therapies, globally targeting TGF-ß1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-ß1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-ß1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-ß1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-ß1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-ß conundrum.


Asunto(s)
Fibrosis/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Fibrosis/patología , Humanos , Transducción de Señal/inmunología
10.
Cancer Immunol Immunother ; 71(8): 1851-1862, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34973084

RESUMEN

Transmembrane protein GARP binds latent TGF-ß1 to form GARP:(latent)TGF-ß1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-ß1. Blocking TGF-ß1 activation by Tregs with anti-GARP:TGF-ß1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-ß1 inhibits anti-tumor immunity. TGF-ß1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-ß1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r-/- mice treated with anti-GARP:TGF-ß1 mAbs. To examine the effects of GARP:TGF-ß1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-ß1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-ß1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. PRéCIS: Immunotherapy with GARP:TGF-ß1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers.


Asunto(s)
Inmunidad Adaptativa , Infecciones Bacterianas , Proteínas de la Membrana , Factor de Crecimiento Transformador beta1 , Animales , Anticuerpos Monoclonales/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Inmunidad , Inmunización , Proteínas de la Membrana/metabolismo , Ratones , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta1/metabolismo
11.
BMC Plant Biol ; 22(1): 308, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35751022

RESUMEN

BACKGROUND: GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS: We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS: The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.


Asunto(s)
Araceae , Fósforo , Araceae/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Fósforo/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Respir Res ; 23(1): 176, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780120

RESUMEN

BACKGROUND: Expression of glycoprotein A dominant repeat (GARP) has been reported to occur only in activated human naturally occurring regulatory T cells (Tregs) and their clones, and not in activated effector T cells, indicating that GARP is a marker for bona fide Tregs. A different phenotype of chronic obstructive pulmonary disease (COPD) may have a different immunologic mechanism. OBJECTIVE: To investigate whether the distribution of Tregs defined by GARP is related to the multi-organ loss of tissue phenotype in COPD. METHODS: GARP expression on T cells from peripheral blood and bronchoalveolar lavage (BAL) collected from patients with COPD was examined by flow cytometry. The correlation of GARP expression to clinical outcomes and clinical phenotype, including the body mass index, lung function and quantitative computed tomography (CT) scoring of emphysema, was analyzed. RESULTS: Patients with more baseline emphysema had lower forced expiratory volume, body mass index (BMI), worse functional capacity, and more osteoporosis, thus, resembling the multiple organ loss of tissue (MOLT) phenotype. Peripheral Foxp3+GARP+ Tregs are reduced in COPD patients, and this reduction reversely correlates with quartiles of CT emphysema severity in COPD. Meanwhile, the frequencies of Foxp3+GARP- Tregs, which are characteristic of pro-inflammatory cytokine production, are significantly increased in COPD patients, and correlated with increasing quartiles of CT emphysema severity in COPD. Tregs in BAL show a similar pattern of variation in peripheral blood. CONCLUSION: Decreased GARP expression reflects more advanced disease in MOLT phenotype of COPD. Our results have potential implications for better understanding of the immunological nature of COPD and the pathogenic events leading to lung damage.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Linfocitos T Reguladores , Factores de Transcripción Forkhead/química , Humanos , Proteínas de la Membrana/química , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfisema Pulmonar/diagnóstico , Factores de Transcripción/química
13.
Med Microbiol Immunol ; 211(5-6): 237-247, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35953613

RESUMEN

This study aimed to clarify the expression changes and clinical significance of regulatory T (Treg) cells and follicular regulatory T (TFR) cell subsets divided by glycoprotein A repetitions predominant protein (GARP) and T cell factor 1(TCF1) in peripheral blood of patients with chronic HBV infection. The peripheral blood of 26 chronic hepatitis B (CHB) patients, 27 inactive HBsAg carriers and 32 healthy controls were collected and GARP + percentages in Treg and TFR cells were analyzed by flow cytometry. In addition, Treg and TFR cell subsets sorted by CD62L and TCF1 were analyzed and compared. Correlation analyses were performed between Treg and TFR cell subpopulations and clinical parameters as well as cytokine concentrations, including IL-21, IL-10 and TGF-ß1 in plasma. Circulating Treg and TFR levels were elevated in CHB patients. Moreover, GARP and TCF1 were up-regulated in circulating Treg and TFR cells of CHB patients. TCF1 + CD62L- Treg cells were increased while TCF1-CD62L + Treg cells were decreased in CHB patients. TCF1 + CD62L- and TCF1-CD62L- TFR cells were increased while TCF1 + CD62L + TFR cells were decreased in CHB patients. TCF1 + CD62L- Treg cells were positively correlated with HBV DNA, ALT and plasma IL-10, while TCF1 + CD62L + TFR cells were negatively correlated with HBV DNA, HBeAg, HBsAg, ALT, AST, T-BIL and positively correlated with plasma IL-21. Treg and TFR subsets sorted by TCF1, CD62L and GARP were changed in CHB patients. Changes in Treg and TFR functional subsets are associated with antiviral immunity in CHB patients.


Asunto(s)
Hepatitis B Crónica , Linfocitos T Reguladores , Humanos , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Interleucina-10 , ADN Viral , Factor 1 de Transcripción de Linfocitos T , Glicoproteínas
14.
Biochem Biophys Res Commun ; 561: 151-157, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34023780

RESUMEN

Rab small GTPases regulate intracellular membrane trafficking by interacting with specific binding proteins called Rab effectors. Although Rab6 is implicated in basement membrane formation and secretory cargo trafficking, its precise regulatory mechanisms have remained largely unknown. In the present study we established five knockout cell lines for candidate Rab6 effectors and discovered that knockout of VPS52, a subunit of the GARP complex, resulted in attenuated secretion and lysosomal accumulation of secretory cargos, the same as Rab6-knockout does. We also evaluated the functional importance of the previously uncharacterized C-terminal region of VPS52 for restoring these phenotypes, as well as for the sorting of lysosomal proteins. Our findings suggest that VPS52 is an effector protein that is responsible for the Rab6-dependent secretory cargo trafficking.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Lisosomas/metabolismo , Vías Secretoras/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Perros , Aparato de Golgi , Humanos , Membranas Intracelulares , Transporte de Proteínas , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/genética
15.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33758916

RESUMEN

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Cell Mol Med ; 24(23): 13984-13990, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33155413

RESUMEN

Mesenchymal stroma/stem-like cells (MSCs) have antitumour activity, and MSC-derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC-derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA-GARP in MSC cells. Exosomes were isolated from MSC and siGARP-MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP-MSC exosomes compared with that of MSC exosomes. We found that siGARP-MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK-8, colony formation, wound-healing and Transwell invasion assays. Furthermore, siGARP-MSC exosomes impeded IL-6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT-qPCR. In conclusion, MSC-derived exosomes targeting GARP are a potential strategy for cancer therapy.


Asunto(s)
Exosomas/metabolismo , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Neoplasias del Colon , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Interleucina-6/metabolismo , Janus Quinasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , MicroARNs/genética , Interferencia de ARN , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 114(47): E10161-E10168, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109269

RESUMEN

Human regulatory T cells (Tregs) suppress other T cells by converting the latent, inactive form of TGF-ß1 into active TGF-ß1. In Tregs, TGF-ß1 activation requires GARP, a transmembrane protein that binds and presents latent TGF-ß1 on the surface of Tregs stimulated through their T cell receptor. However, GARP is not sufficient because transduction of GARP in non-Treg T cells does not induce active TGF-ß1 production. RGD-binding integrins were shown to activate TGF-ß1 in several non-T cell types. Here we show that αVß8 dimers are present on stimulated human Tregs but not in other T cells, and that antibodies against αV or ß8 subunits block TGF-ß1 activation in vitro. We also show that αV and ß8 interact with GARP/latent TGF-ß1 complexes in human Tregs. Finally, a blocking antibody against ß8 inhibited immunosuppression by human Tregs in a model of xenogeneic graft-vs.-host disease induced by the transfer of human T cells in immunodeficient mice. These results show that TGF-ß1 activation on the surface of human Tregs implies an interaction between the integrin αVß8 and GARP/latent TGF-ß1 complexes. Immunosuppression by human Tregs can be inhibited by antibodies against GARP or against the integrin ß8 subunit. Such antibodies may prove beneficial against cancer or chronic infections.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Integrinas/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Integrinas/antagonistas & inhibidores , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones SCID , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Reguladores/trasplante , Factor de Crecimiento Transformador beta1/metabolismo , Trasplante Heterólogo
18.
Allergol Immunopathol (Madr) ; 48(1): 67-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31477391

RESUMEN

BACKGROUND: There is little understanding of the mechanisms by which food allergy (FA) develops into persistent disease, or by which symptoms it regresses. Food allergy is a major health problem in developed countries, where the prevalence reaches up to 6% in children and 3% in the adult population. OBJECTIVE: Children with food allergy remission (FAR) and those without FAR below five years of age, were compared 7-10 years with respect to clinical data and expression of glycoprotein A repetitions predominant (GARP) on peripheral blood mononuclear cells. METHODS: Forty children with FAR and 40 children without FAR at age 7-10, in whom FA was previously diagnosed at age below five years were evaluated. In this prospective study, demographic and clinical data were taken, patients were classified as atopic based on history and serum specific IgE (sIgE) for a specific allergen. Blood samples were obtained from all patients to assess expression of GARP. RESULTS: We observed higher expression of GARP in children with FAR compared to children without FA (p=0.005); optimal cut-off for GARP prediction of the remission was 20.1%. Children with FAR and food-specific IgE in serum had higher expression of GARP compared to children with low food specific IgE (<0.35kU/L). Keeping pets at home decreased, and presence of allergic rhinitis increased ORs for high expression of GARP (hGARP) in our patients. CONCLUSION: hGARP (>20.1%) is related with FAR in school children. Allergic rhinitis, and pets at home modify this effect of GARP. Children with allergic rhinitis have less chance of developing remission despite maintaining immune tolerance (hGARP); quite the opposite case with pets at home.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Proteínas de la Membrana/metabolismo , Alérgenos/inmunología , Animales , Niño , Femenino , Hipersensibilidad a los Alimentos/epidemiología , Humanos , Tolerancia Inmunológica , Inmunoglobulina E/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Mascotas/inmunología , Estudios Prospectivos , Remisión Espontánea , Rinitis Alérgica/epidemiología , Rinitis Alérgica/inmunología
19.
J Biol Chem ; 293(5): 1579-1589, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29109152

RESUMEN

TGF-ß is synthesized as a proprotein that dimerizes in the endoplasmic reticulum. After processing in the Golgi to cleave the N-terminal prodomain from the C-terminal growth factor (GF) domain in each monomer, pro-TGF-ß is secreted and stored in latent complexes. It is unclear which prodomain and GF monomer are linked before proprotein convertase cleavage and how much conformational change occurs following cleavage. We have determined a structure of pro-TGF-ß1 with the proprotein convertase cleavage site mutated to mimic the structure of the TGF-ß1 proprotein. Structure, mutation, and model building demonstrate that the prodomain arm domain in one monomer is linked to the GF that interacts with the arm domain in the other monomer in the dimeric structure (i.e. the prodomain arm domain and GF domain in each monomer are swapped). Swapping has important implications for the mechanism of biosynthesis in the TGF-ß family and is relevant to the mechanism for preferential formation of heterodimers over homodimers for some members of the TGF-ß family. Our structure, together with two previous ones, also provides insights into which regions of the prodomain-GF complex are highly structurally conserved and which are perturbed by crystal lattice contacts.


Asunto(s)
Modelos Moleculares , Precursores de Proteínas/química , Factor de Crecimiento Transformador beta1/química , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Mutación , Dominios Proteicos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
20.
Plant Mol Biol ; 101(4-5): 403-414, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31420780

RESUMEN

Anther dehiscence, one of the essential steps in pollination and double fertilization, is regulated by a complex signaling pathway encompassing hormones and environmental factors. However, key components underlying the signaling pathway that regulate anther dehiscence remain largely elusive. Here, we isolated a rice mutant anther dehiscence defected 1 (Osadd1) that exhibited defects in anther dehiscence and glume open. Map-based cloning revealed that OsADD1 encoded a GARP (Golden2, ARR-B and Psr1) transcription factor. Sequence analysis showed that a single base deletion in Osadd1 mutant resulted in pre-termination of the GARP domain. OsADD1 was constitutively expressed in various tissues, with more abundance in the panicles. The major genes associated with anther dehiscence were affected in the Osadd1 mutant, and the expression level of the cellulose synthase-like D sub-family 4 (OsCSLD4) was significantly decreased. We demonstrate that OsADD1 regulated the expression of OsCSLD4 by binding to its promoter, and affects rice anther dehiscence.


Asunto(s)
Flores/fisiología , Oryza/fisiología , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Clonación Molecular , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA