Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999142

RESUMEN

Ba1-xCexMnO3 (BM-Cex) and Ba1-xLaxMn0.7Cu0.3O3 (BMC-Lax) perovskite-type mixed oxides were synthesized using the sol-gel method adapted for aqueous media with different values of x (0, 0.1, 0.3, 0.6) to estimate the effect of the degree of the partial substitution of Ba by Ce or La on the structure and properties that are relevant for their use as catalysts for gasoline direct injection (GDI) soot oxidation. The samples were deeply characterized by ICP-OES, XRD, XPS, N2 adsorption, H2-TPR, and O2-TPD, and their potential as catalysts for soot oxidation has been analyzed in various scenarios that replicate the exhaust conditions of a GDI engine. By comparing the catalytic performance for soot oxidation of the two tested series (BM-Cex and BMC-Lax) and in the two conditions used (100% He and 1% O2 in He), it could be concluded that (i) in the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst, as copper is also able to catalyze the soot oxidation; and (ii) if oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most-active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1. Thus, it seems that the addition of an amount of Ce or La higher than that corresponding to x = 0.1 in Ba1-xCexMnO3 and Ba1-xLaxCu0.3Mn0.7O3 does not allow us to improve the catalytic performance of BM-Ce0.1 and BMC-La0.1 for soot oxidation in the tested conditions.

2.
Clin Genet ; 103(6): 681-687, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688272

RESUMEN

The low copy tandem repeat area at Xq28 is prone to recurrent copy number gains, including the K/L mediated duplications of 300 kb size (herein described as the K/L mediated Xq28 duplication syndrome). We describe five families, including nine males with K/L mediated Xq28 duplications, some with regions of greater copy number variation (CNV). We summarise findings in 25 affected males reported to date. Within the five families, males were variably affected by seizures, intellectual disability, and neurological features; however, one male with a familial K/L mediated Xq28 duplication has normal intelligence, suggesting that this CNV is not 100% penetrant. Including our five families, 13 carrier females have been identified, with nine presenting phenotypically normal. Three carrier females reported mild learning difficulties, and all of them had duplications containing regions with at least four copies. Delineation of the spectrum of K/L mediated Xq28 duplication syndrome highlights GDI1 as the most likely candidate gene contributing to the phenotype. For patients identified with CNVs in this region, high-resolution microarray is required to define copy number gains and provide families with accurate information.


Asunto(s)
Variaciones en el Número de Copia de ADN , Discapacidad Intelectual , Femenino , Masculino , Humanos , Cromosomas Humanos X , Penetrancia , Discapacidad Intelectual/genética , Fenotipo , Duplicación de Gen , Duplicación Cromosómica
3.
Mol Phylogenet Evol ; 180: 107682, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574825

RESUMEN

Although genomic data is boosting our understanding of evolution, we still lack a solid framework to perform reliable genome-based species delineation. This problem is especially critical in the case of phylogeographically structured organisms, with allopatric populations showing similar divergence patterns as species. Here, we assess the species limits and phylogeography of Zodarion alacre, an ant-eating spider widely distributed across the Iberian Peninsula. We first performed species delimitation based on genome-wide data and then validated these results using additional evidence. A commonly employed species delimitation strategy detected four distinct lineages with almost no admixture, which present allopatric distributions. These lineages showed ecological differentiation but no clear morphological differentiation, and evidence of introgression in a mitochondrial barcode. Phylogenomic networks found evidence of substantial gene flow between lineages. Finally, phylogeographic methods highlighted remarkable isolation by distance and detected evidence of range expansion from south-central Portugal to central-north Spain. We conclude that despite their deep genomic differentiation, the lineages of Z. alacre do not show evidence of complete speciation. Our results likely shed light on why Zodarion is among the most diversified spider genera despite its limited distribution and support the use of gene flow evidence to inform species boundaries.


Asunto(s)
Flujo Génico , Arañas , Animales , Filogenia , Especiación Genética , Arañas/genética , Análisis de Secuencia de ADN , Filogeografía , Genómica , ADN Mitocondrial/genética
4.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110561

RESUMEN

Mixed oxides with perovskite-type structure (ABO3) are promising catalysts for atmospheric pollution control due to their interesting and tunable physicochemical properties. In this work, two series of BaxMnO3 and BaxFeO3 (x = 1 and 0.7) catalysts were synthesized using the sol-gel method adapted to aqueous medium. The samples were characterized by µ-XRF, XRD, FT-IR, XPS, H2-TPR, and O2-TPD. The catalytic activity for CO and GDI soot oxidation was determined by temperature-programmed reaction experiments (CO-TPR and soot-TPR, respectively). The results reveal that a decrease in the Ba content improved the catalytic performance of both catalysts, as B0.7M-E is more active than BM-E for CO oxidation, and B0.7F-E presents higher activity than BF for soot conversion in simulated GDI engine exhaust conditions. Manganese-based perovskites (BM-E and B0.7M-E) achieve better catalytic performance than iron-based perovskite (BF) for CO oxidation reaction due to the higher generation of actives sites.

5.
J Biol Chem ; 295(8): 2270-2284, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31949046

RESUMEN

Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Unión Proteica
6.
Biochem Biophys Res Commun ; 562: 119-126, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34051575

RESUMEN

BACKGROUND: Prostate cancer (PCa) refers to malignant tumors derived from prostate epithelial cells, whose morbidity and mortality rates have been increasing every year. Although new drugs for treating prostate cancer continue to emerge, the unclear mechanism underlying drug targets limits this therapy, thereby constraining identification of effective therapeutic targets. Although GDP dissociation inhibitor 2(GDI2) is highly expressed and closely associated with occurrence and development of many tumors, its role in prostate cancer remains unclear. In this study, we investigated the role of GDI2 and elucidated its underlying mechanism of action in prostate cancer. Moreover, we screened chemotherapeutic drugs that affect GDI2 expression with a view of identifying novel targets for diagnosis and treatment of prostate cancer. METHODS: We performed sequence analyses and functional assays to precisely elucidate the GDI2 role in prostate cancer. Moreover, we induced tumorigenesis in nude mice to verify the role of GDI2 in vivo. Finally, we used the CCK8 assay to ascertain the most suitable IC50 across the three drugs and performed quantitative real time polymerase chain reaction (qRT-PCR) and Western Blot to analyze the effects of drugs on expression of GDI2, p75NTR, and p-NFκB. RESULTS: GDI2 was up-regulated in prostate cancer cells and tissues. Knocking down GDI2 suppressed cell proliferation but promoted cell apoptosis. Interestingly, knocking down GDI2 activated the p75NTR signaling pathway, indicating, for the first time, that p75NTR is negatively correlated with GDI2 expression. CONCLUSION: Taken together, these results indicate that GDI2 is a therapeutic target of paclitaxel. Knocking down of GDI2 inhibits cell proliferation and promotes cell apoptosis via the p75NTR signaling pathway in prostate cancer. Notably, paclitaxel inhibits GDI2 expression, implying that GDI2 may be a promising therapeutic target in prostate cancer.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Paclitaxel/farmacología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
BMC Ophthalmol ; 21(1): 74, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549064

RESUMEN

BACKGROUND: Glaucoma drainage implants have been used with increasing frequency for the management of glaucoma. Patients who are candidates for glaucoma drainage devices often have more severe disease and are at risk of vision loss with post-operative elevations in intraocular pressure (IOP). One post-operative complication that can result in IOP elevation after glaucoma drainage device implantation is occlusion of the tube lumen. CASE PRESENTATION: Here, we present a novel case of tube occlusion by the anterior capsule in a patient who underwent combined phacoemulsification and Ahmed glaucoma valve implantation. The tube occlusion was successfully managed with Nd:YAG capsulotomy with immediate IOP lowering. CONCLUSIONS: While there have been previous reports of occlusion of the tube lumen by vitreous, iris, blood and fibrin, to our knowledge this is the first report of tube occlusion by the anterior lens capsule and the first report to describe its successful management.


Asunto(s)
Implantes de Drenaje de Glaucoma , Glaucoma , Facoemulsificación , Glaucoma/cirugía , Humanos , Presión Intraocular , Complicaciones Posoperatorias/cirugía , Tonometría Ocular
8.
Genes Dev ; 27(24): 2696-707, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24352424

RESUMEN

Protein synthesis factor eIF2 delivers initiator tRNA to the ribosome. Two proteins regulate its G-protein cycle: eIF5 has both GTPase-accelerating protein (GAP) and GDP dissociation inhibitor (GDI) functions, and eIF2B is the guanine nucleotide exchange factor (GEF). In this study, we used protein-protein interaction and nucleotide exchange assays to monitor the kinetics of eIF2 release from the eIF2•GDP/eIF5 GDI complex and determine the effect of eIF2B on this release. We demonstrate that eIF2B has a second activity as a GDI displacement factor (GDF) that can recruit eIF2 from the eIF2•GDP/eIF5 GDI complex prior to GEF action. We found that GDF function is dependent on the eIF2Bε and eIF2Bγ subunits and identified a novel eIF2-eIF2Bγ interaction. Furthermore, GDF and GEF activities are shown to be independent. First, eIF2B GDF is insensitive to eIF2α phosphorylation, unlike GEF. Second, we found that eIF2Bγ mutations known to disrupt GCN4 translational control significantly impair GDF activity but not GEF function. Our data therefore define an additional step in the protein synthesis initiation pathway that is important for its proper control. We propose a new model to place eIF2B GDF function in the context of efficient eIF2 recycling and its regulation by eIF2 phosphorylation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Guanosina Difosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Guanina/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Mutación , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética
9.
Fungal Genet Biol ; 136: 103319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884054

RESUMEN

The cell wall is a distinctive feature of filamentous fungi, providing them with structural integrity and protection from both biotic and abiotic factors. Unlike plant cell walls, fungi rely on structurally strong hydrophobic chitin core for mechanical strength together with alpha- and beta-glucans, galactomannans and glycoproteins. Cell wall stress conditions are known to alter the cell wall through the signaling cascade of the cell wall integrity (CWI) pathway and can result in increased cell wall chitin deposition. A previously isolated set of Aspergillus niger cell wall mutants was screened for increased cell wall chitin deposition. UV-mutant RD15.8#16 was found to contain approximately 60% more cell wall chitin than the wild type. In addition to the chitin phenotype, RD15.8#16 exhibits a compact colony morphology and increased sensitivity towards SDS. RD15.8#16 was subjected to classical genetic approach for identification of the underlying causative mutation, using co-segregation analysis and SNP genotyping. Genome sequencing of RD15.8#16 revealed eight SNPs in open reading frames (ORF) which were individually checked for co-segregation with the associated phenotypes, and showed the potential relevance of two genes located on chromosome IV. In situ re-creation of these ORF-located SNPs in a wild type background, using CRISPR/Cas9 genome editing, showed the importance Rab GTPase dissociation inhibitor A (gdiA) for the phenotypes of RD15.8#16. An alteration in the 5' donor splice site of gdiA reduced pre-mRNA splicing efficiency, causing aberrant cell wall assembly and increased chitin levels, whereas gene disruption attempts showed that a full gene deletion of gdiA is lethal.


Asunto(s)
Aspergillus niger/genética , Quitina/metabolismo , Proteínas Fúngicas/genética , Genes Esenciales , Inhibidores de Disociación de Guanina Nucleótido/genética , Aspergillus niger/metabolismo , Sistemas CRISPR-Cas , Pared Celular/metabolismo , Eliminación de Gen , Edición Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Empalme del ARN/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
10.
J Integr Plant Biol ; 62(10): 1484-1499, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32198818

RESUMEN

Most eukaryotic cells are polarized. Common toolbox regulating cell polarization includes Rho guanosine triphosphatases (GTPases), in which spatiotemporal activation is regulated by a plethora of regulators. Rho of plants (ROPs) are the only Rho GTPases in plants. Although vesicular trafficking was hinted in the regulation of ROPs, it was unclear where vesicle-carried ROP starts, whether it is dynamically regulated, and which components participate in vesicle-mediated ROP targeting. In addition, although vesicle trafficking and guanine nucleotide inhibitor (GDI) pathways in Rho signaling have been extensively studied in yeast, it is unknown whether the two pathways interplay. Unclear are also cellular and developmental consequences of their interaction in multicellular organisms. Here, we show that the dynamic targeting of ROP through vesicles requires coat protein complex II and ADP-ribosylation factor 1-mediated post-Golgi trafficking. Trafficking of vesicle-carried ROPs between the plasma membrane and the trans-Golgi network is mediated through adaptor protein 1 and sterol-mediated endocytosis. Finally, we show that GDI and vesicle trafficking synergistically regulate cell polarization and ROP targeting, suggesting that the establishment and maintenance of cell polarity is regulated by an evolutionarily conserved mechanism.


Asunto(s)
Proteínas de Unión al GTP rho/metabolismo , Endosomas/metabolismo , Proteínas de Unión al GTP rho/genética , Red trans-Golgi/metabolismo
11.
J Biol Chem ; 293(2): 731-739, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29184002

RESUMEN

The identity of organelles in the endomembrane system of any eukaryotic cell critically depends on the correctly localized Rab GTPase, which binds effectors and thus promotes membrane remodeling or fusion. However, it is still unresolved which factors are required and therefore define the localization of the correct fusion machinery. Using SNARE-decorated proteoliposomes that cannot fuse on their own, we now demonstrate that full fusion activity can be achieved by just four soluble factors: a soluble SNARE (Vam7), a guanine nucleotide exchange factor (GEF, Mon1-Ccz1), a Rab-GDP dissociation inhibitor (GDI) complex (prenylated Ypt7-GDI), and a Rab effector complex (HOPS). Our findings reveal that the GEF Mon1-Ccz1 is necessary and sufficient for stabilizing prenylated Ypt7 on membranes. HOPS binding to Ypt7-GTP then drives SNARE-mediated fusion, which is fully GTP-dependent. We conclude that an entire fusion cascade can be controlled by a GEF.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Lisosomas/química , Fusión de Membrana , Prenilación , Unión Proteica , Transporte de Proteínas , Proteolípidos/química , Saccharomyces cerevisiae/metabolismo
12.
BMC Evol Biol ; 19(1): 95, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023232

RESUMEN

BACKGROUND: Recent studies have demonstrated that Bayesian species delimitation based on the multispecies coalescent model can produce inaccurate results by misinterpreting population splits as species divergences. An approach based on the genealogical divergence index (gdi) was shown to be a viable alternative, especially for delimiting allopatric populations where gene flow is low. We implemented these analyses to assess species boundaries in Southeast Asian toads, a group that is understudied and characterized by numerous unresolved species complexes. RESULTS: Multilocus phylogenetic analyses showed that deep evolutionary relationships including the genera Sigalegalephrynus, Ghatophryne, Parapelophryne, Leptophryne, Pseudobufo, Rentapia, and Phrynoides remain unresolved. Comparison of genetic divergences revealed that intraspecific divergences among allopatric populations of Pelophyrne signata (Borneo vs. Peninsular Malaysia), Ingerophrynus parvus (Peninsular Malaysia vs. Myanmar), and Leptophryne borbonica (Peninsular Malaysia, Java, Borneo, and Sumatra) are consistent with interspecific divergences of other Southeast Asian bufonid taxa. Conversely, interspecific divergences between Pelophryne guentheri/P. api, Ansonia latiffi/A. leptopus, and I. gollum/I. divergens were low (< 3%) and consistent with intraspecific divergences of other closely related taxa. The BPP analysis produced variable results depending on prior settings and priors estimated from empirical data produced the best results that were also congruent with the gdi analysis. CONCLUSIONS: This study showed that the evolutionary history of Southeast Asian toads is difficult to resolve and numerous relationships remain ambiguous. Although some results from the species delimitation analyses were inconclusive, they were nevertheless efficacious at identifying potential new species and taxonomic incompatibilities for future in-depth investigation. We also demonstrated the sensitivity of BPP to different priors and that careful selection priors based on empirical data can greatly improve the analysis. Finally, the gdi can be a robust tool to complement other species delimitation methods.


Asunto(s)
Bufonidae/clasificación , Bufonidae/genética , Sitios Genéticos , Filogenia , Animales , Asia Sudoriental , Teorema de Bayes , Flujo Génico , Probabilidad , Especificidad de la Especie
13.
Development ; 143(6): 994-1004, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26839361

RESUMEN

Axon guidance at choice points depends on the precise regulation of guidance receptors on the growth cone surface. Upon arrival at the intermediate target or choice point, a switch from attraction to repulsion is required for the axon to move on. Dorsal commissural (dI1) axons crossing the ventral midline of the spinal cord in the floor plate represent a convenient model for the analysis of the molecular mechanism underlying the switch in axonal behavior. We identified in chick a role for calsyntenin 1 in the regulation of vesicular trafficking of guidance receptors in dI1 axons at choice points. In cooperation with RabGDI, calsyntenin 1 shuttles Rab11-positive vesicles containing Robo1 to the growth cone surface in a precisely regulated manner. By contrast, calsyntenin 1-mediated trafficking of frizzled 3, a guidance receptor in the Wnt pathway, is independent of RabGDI. Thus, tightly regulated insertion of guidance receptors, which is required for midline crossing and the subsequent turn into the longitudinal axis, is achieved by specific trafficking.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al Calcio/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Proteínas Aviares/metabolismo , Células COS , Pollos , Chlorocebus aethiops , Silenciador del Gen , Conos de Crecimiento/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Fenotipo , Transporte de Proteínas
14.
Platelets ; 30(1): 17-22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29799302

RESUMEN

Rho GTPases are master orchestrators of cytoskeletal dynamics and serve critical roles in platelet physiology to promote hemostasis or pathology in thrombotic, inflammatory and other disease states. Over the past 25 years, specific platelet cell biological outputs have been linked to the activities of Rho GTPases, including RhoA, Rac1, Cdc42, and RhoG in shape change and secretion as well as cytoskeletal assembly events underlying platelet aggregation and thrombus stability. Rho GTPases have also more recently been noted to serve more specialized roles in platelet function and to cooperate with one another in mediating essential platelet responses. The evolving molecular mechanisms regulating platelet Rho GTPase functions are increasingly complex, involving an interdependent array of signal transduction molecules, including several protein kinases as well as numerous Rho GEFs, GAPs, and GDI proteins such as LARG, ARHGEF6 (Cool-2, α-Pix), ARHGEF10, GIT1, ARHGAP17 (Nadrin, Rich1), OPHN1, and Ly-GDI. In this review, we provide an update of recent work and developing hypotheses further establishing more specialized as well as cooperative roles for Rho GTPases in platelet physiology and emerging regulatory and downstream effector mechanisms whereby Rho GTPases participate in platelet activation programs in physiology and an expanding set of platelet-associated disease states.


Asunto(s)
Plaquetas/fisiología , Susceptibilidad a Enfermedades , Proteínas de Unión al GTP rho/metabolismo , Animales , Biomarcadores , Humanos , Espacio Intracelular/metabolismo , Activación Plaquetaria , Agregación Plaquetaria
15.
Biochim Biophys Acta Bioenerg ; 1859(9): 984-996, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29626418

RESUMEN

Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed "BMF", has a statin-like properties, which blocks the action of the rate-limiting enzyme for mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl-CoA-reductase). Moreover, our results indicate that BMF functionally inhibits several key characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated signalling pathways (STAT1/3, Notch and Wnt/beta-catenin) targeting Rho-GDI-signalling. In addition, BMF metabolically inhibited mitochondrial respiration (OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we show that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy.


Asunto(s)
Productos Biológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ácido Mevalónico/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Aceites de Plantas/química , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia
16.
Am J Med Genet A ; 176(3): 551-559, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29341460

RESUMEN

Copy number variants of the X-chromosome are a common cause of X-linked intellectual disability in males. Duplication of the Xq28 band has been known for over a decade to be the cause of the Lubs X-linked Mental Retardation Syndrome (OMIM 300620) in males and this duplication has been narrowed to a critical region containing only the genes MECP2 and IRAK1. In 2009, four families with a distal duplication of Xq28 not including MECP2 and mediated by low-copy repeats (LCRs) designated "K" and "L" were reported with intellectual disability and epilepsy. Duplication of a second more distal region has been described as the cause of the Int22h-1/Int22h-2 Mediated Xq28 Duplication Syndrome, characterized by intellectual disability, psychiatric problems, and recurrent infections. We report two additional families possessing the K/L-mediated Xq28 duplication with affected males having intellectual disability and epilepsy similar to the previously reported phenotype. To our knowledge, this is the second cohort of individuals to be reported with this duplication and therefore supports K/L-mediated Xq28 duplications as a distinct syndrome.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Estudios de Asociación Genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Preescolar , Mapeo Cromosómico , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Lactante , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Linaje , Fenotipo
17.
Am J Physiol Cell Physiol ; 312(4): C527-C536, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148498

RESUMEN

On activation at sites of vascular injury, platelets undergo morphological alterations essential to hemostasis via cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42, and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in platelet function. We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Whereas RhoGDI localizes throughout platelets in a granule-like manner, Ly-GDI shows an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI, which is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP) VI-specific agonist collagen-related peptide. Additionally, PKC inhibition diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Together, our results suggest a role for Ly-GDI in the localized regulation of Rho GTPases in platelets and hypothesize a link between the PKC and Rho GTPase signaling systems in platelet function.


Asunto(s)
Coagulación Sanguínea/fisiología , Plaquetas/fisiología , Activación Plaquetaria/fisiología , Adhesividad Plaquetaria/fisiología , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Células Cultivadas , Hemostasis/fisiología , Humanos , Transducción de Señal/fisiología , Fracciones Subcelulares/metabolismo
18.
J Biol Chem ; 291(20): 10726-35, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26969162

RESUMEN

Rab GTPases are critical regulators of membrane trafficking. The canonical view is that Rabs are soluble in their inactive GDP-bound form, and only upon activation and conversion to their GTP-bound state are they anchored to membranes through membrane insertion of a C-terminal prenyl group. Here we demonstrate that C-terminal prenylation is not required for Rab13 to associate with and traffic on vesicles. Instead, inactive Rab13 appears to associate with vesicles via protein-protein interactions. Only following activation does Rab13 associate with the plasma membrane, presumably with insertion of the C-terminal prenyl group into the membrane.


Asunto(s)
Proteínas de Unión al GTP rab/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Estructuras de la Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endosomas/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Prenilación de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
19.
Biochem Soc Trans ; 45(1): 147-154, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28202668

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential. LRRK2 has been consistently shown to impair various intracellular vesicular trafficking events, and recent studies have shown that LRRK2 can phosphorylate a subset of proteins that are intricately implicated in those processes. In light of these findings, we here review the link between cellular deficits in intracellular trafficking pathways and the LRRK2-mediated phosphorylation of those newly identified substrates.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/enzimología , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Modelos Biológicos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas de Unión al GTP rab/genética
20.
Biochem J ; 473(10): 1379-90, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26987813

RESUMEN

Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gßγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gßγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/metabolismo , Canales Catiónicos TRPC/metabolismo , Western Blotting , Electrofisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Proteínas de Unión al GTP/genética , Inhibidores de Disociación de Guanina Nucleótido/genética , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación Puntual , Unión Proteica , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA