Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Transl Med ; 22(1): 662, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010104

RESUMEN

BACKGROUND: Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. METHODS: We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3ß/ß-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. RESULTS: Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3ß/ß-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3ß/ß-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3ß/ß-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3ß/ß-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.


Asunto(s)
Condrocitos , Ritmo Circadiano , Glucógeno Sintasa Quinasa 3 beta , Cóndilo Mandibular , Osteoartritis , Proteínas Circadianas Period , Articulación Temporomandibular , Regulación hacia Arriba , beta Catenina , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , beta Catenina/metabolismo , Osteoartritis/patología , Osteoartritis/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Cóndilo Mandibular/patología , Cóndilo Mandibular/metabolismo , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Ratas
2.
Mol Carcinog ; 54(1): 1-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23857500

RESUMEN

Recently, tumor initiating cells are considered as the central role of tumorigenicity in hepatocellular carcinoma. Enediyne anticancer antibiotic lidamycin with great potential antitumor activity is currently evaluated in Phase II clinical trials. In this study, we evaluated the effect of lidamycin on tumor initiating cells of hepatocellular carcinoma Huh7 and identified the potential mechanism. Flow cytometry analysis and sorting assay, surface marker assay, sphere formation assay, and aldefluor assay were used to evaluate the effect of lidamycin on Huh7 tumor initiating cells in vitro. To investigate the potential mechanism, the activity of GSK3ß/ß-catenin pathway was detected by Western blot and T cell factors transcriptional activity assay. Subcutaneous tumor model in nude mice was used to observe in vivo effect of lidamycin on Huh7 cells. Lidamycin decreased the proportion of EpCAM+ cells and the expression of EpCAM protein. Lidamycin inhibited sphere formation of sorted EpCAM+ cells in 7 d, and of parental cells in three serial passages. The population of aldehyde dehydrogenase-positive cells was reduced by lidamycin. In addition, lidamycin restrained tumor volume and incidence in vivo. Lidamycin activated GSK3ß, and degraded the activity of ß-catenin. Consequently, transcriptional activity of ß-catenin/T cell factors was decreased. In brief, these results suggest that lidamycin suppressed Huh7 tumor initiating cells via GSK3ß/ß-catenin pathway. These findings reveal the potential mechanism of lidamycin on tumor initiating cells and the benefit for further clinical evaluation.


Asunto(s)
Aminoglicósidos/farmacología , Antibióticos Antineoplásicos/farmacología , Carcinoma Hepatocelular/patología , Enediinos/farmacología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas Experimentales , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
3.
Stem Cells ; 32(6): 1602-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24302516

RESUMEN

Self-renewing proliferation of neural stem cells (NSCs) is intimately linked to the inhibition of neuronal and glial differentiation, however, their molecular linkage has been poorly understood. We have proposed a model previously explaining partly this linkage, in which fibroblast growth factor 2 (FGF2) and Wnt signals cooperate to promote NSC self-renewal via ß-catenin accumulation, which leads to the promotion of proliferation by lymphoid enhancer factor (LEF)/T-cell factor (TCF)-mediated cyclin D1 expression and at the same time to the inhibition of neuronal differentiation by ß-catenin-mediated potentiation of Notch signaling. To fully understand the mechanisms underlying NSC self-renewal, it needs to be clarified how these growth factor signals inhibit glial differentiation as well. Here, we demonstrate that cyclin D1, a NSC growth promoting signaling component and also a common component of FGF2 and Wnt signaling pathways, inhibits astroglial differentiation of NSCs. Interestingly, this effect of cyclin D1 is mediated even though its cell cycle progression activity is blocked. Forced downregulation of cyclin D1 enhances astrogliogenesis of NSCs in culture and in vivo. We further demonstrate that cyclin D1 binds to STAT3, a transcription factor downstream of astrogliogenic cytokines, and suppresses its transcriptional activity on the glial fibrillary acidic protein (Gfap) gene. Taken together with our previous finding, we provide a novel molecular mechanism for NSC self-renewal in which growth promoting signaling components activated by FGF2 and Wnts inhibit neuronal and glial differentiation.


Asunto(s)
Astrocitos/citología , Ciclina D1/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Transducción de Señal , Animales , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Proteína Morfogenética Ósea 2/farmacología , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Proteína p300 Asociada a E1A/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Proteína Ácida Fibrilar de la Glía , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Factor Inhibidor de Leucemia/farmacología , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Estabilidad Proteica/efectos de los fármacos , Interferencia de ARN/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , beta Catenina/metabolismo
4.
Bioengineered ; 12(1): 6403-6417, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34516354

RESUMEN

Acute myeloid leukemia (AML) represents a hematopoietic cancer with an invasive property. Chemoresistance blunts the therapeutic effect of chemotherapeutics in AML. Long noncoding RNAs (lncRNAs) have been implicated in chemotherapy resistance in AML. Transcriptome sequencing in the current study was applied to clarify the differentially expressed lncRNAs between peripheral blood mononuclear cells of AML and normal samples. The expression of special AT-rich sequence binding protein 1 antisense RNA 1 (SATB1-AS1) and 2'-5'-oligoadenylate synthetase 2 (OAS2) in AML patients was evaluated by qRT-PCR. The relationships among SATB1-AS1, microRNA-580 (miR-580) and OAS2 were investigated by dual-luciferase reporter assay. We observed that SATB1-AS1 and OAS2 were upregulated, while miR-580 was downregulated in AML patients. SATB1-AS1 depletion suppressed proliferation, and enhanced apoptosis and sensitivity of AML cells. Additionally, SATB1-AS1 promoted the expression of OAS2 by acting as a molecular sponge of miR-580 in AML. miR-580 downregulation, OAS2 overexpression and a selective glycogen synthase kinase (GSK)-3ß inhibitor AR-A014418 abolished the effects of SATB1-AS1 deletion on the chemosensitivity of AML cells. In conclusion, SATB1-AS1 knockdown promotes the sensitivity of AML cells by upregulating miR-580 and downregulating OAS2 through the GSK3ß/ß-catenin pathway, providing new insights into the function of SATB1-AS1 as a miRNA sponge in AML.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , ARN Largo no Codificante/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , Transcriptoma/genética , beta Catenina/genética , beta Catenina/metabolismo
5.
Onco Targets Ther ; 12: 9093-9104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31806994

RESUMEN

PURPOSE: Diosgenin (DSG) is the precursor of steroid hormones and plays a crucial part in the proliferation of various carcinomas including human colorectal cancer and gastric carcinoma. Nevertheless, its specific features and mechanisms in human cholangiocarcinoma (CCA) remain unknown. METHODS: MTS assay, colony-forming assay, and EdU assay were performed to determine the role of DSG on the progression of human CCA cells. The distributions of cell cycle, the ratio of apoptosis, and the mitochondrial membrane potential (ΔΨm) were studied by flow cytometry (FCM). AO/EB and Hoechst 33258 staining were performed to observe the morphological features of cell apoptosis. TEM was performed to observe the ultrastructures of QBC939 and HuCCT1 cells. The mRNA and protein expression of mitochondrial apoptotic pathway and GSK3ß/ß-catenin pathway were further confirmed by qPCR and Western blotting. The xenograft tumor model of HuCCT1 cells was built. Immunohistochemistry of tumor tissues was performed. RESULTS: Our results indicated that DSG inhibited the progression of six CCA cell lines. In vivo tumor studies also indicated that DSG significantly inhibited tumor growth in xenografts in nude mice. The expression of mitosis-promoting factor cyclinB1 was decreased along with the elevating level of cell cycle inhibitor p21, resulting in arresting CCA cell cycles at G2/M phase. Furthermore, DSG induced apoptosis with the increased expressions of cytosol cytochrome C, cleaved-caspase-3, cleaved-PARP1 and the Bax/Bcl-2 ratio. Mechanistically, our study showed that GSK3ß/ß-catenin pathway was involved in the apoptosis of CCA cells. Thus, DSG might provide a new clue for the drug therapy of CCA. CONCLUSION: In our data, DSG was found to have efficient antitumor potential of human CCA cells in vitro and in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA