Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(3): 1577-1588, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194437

RESUMEN

Antarctica, protected by its strong polar vortex and sheer distance from anthropogenic activity, was always thought of as pristine. However, as more data on the occurrence of persistent organic pollutants on Antarctica emerge, the question arises of how fast the long-range atmospheric transport takes place. Therefore, polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-)PAHs were sampled from the atmosphere and measured during 4 austral summers from 2017 to 2021 at the Princess Elisabeth station in East Antarctica. The location is suited for this research as it is isolated from other stations and activities, and the local pollution of the station itself is limited. A high-volume sampler was used to collect the gas and particle phase (PM10) separately. Fifteen PAHs and 12 oxy-PAHs were quantified, and concentrations ranging between 6.34 and 131 pg m3 (Σ15PAHs-excluding naphthalene) and between 18.8 and 114 pg m3 (Σ13oxy-PAHs) were found. Phenanthrene, pyrene, and fluoranthene were the most abundant PAHs. The gas-particle partitioning coefficient log(Kp) was determined for 6 compounds and was found to lie between 0.5 and -2.5. Positive matrix factorization modeling was applied to the data set to determine the contribution of different sources to the observed concentrations. A 6-factor model proved a good fit to the data set and showed strong variations in the contribution of different air masses. During the sampling campaign, a number of volcanic eruptions occurred in the southern hemisphere from which the emission plume was detected. The FLEXPART dispersion model was used to confirm that the recorded signal is indeed influenced by volcanic eruptions. The data was used to derive a transport time of between 11 and 33 days from release to arrival at the measurement site on Antarctica.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Regiones Antárticas , Contaminación Ambiental
2.
Environ Sci Technol ; 58(17): 7493-7504, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38637508

RESUMEN

Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 µg/m3 to 2.3 µg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.


Asunto(s)
Carbono , Carbono/química , Viscosidad , Compuestos Orgánicos Volátiles/química , Luz , Atmósfera/química , Humo
3.
Environ Sci Technol ; 57(49): 20750-20760, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909879

RESUMEN

The environmental implications of polycyclic aromatic hydrocarbons (PAHs) caused by the vigorous development of offshore oil exploitation and shipping on the marine ecosystem are unclear. In this study, the PAH concentrations were systematically characterized in multiple environmental media (i.e., atmosphere, rainwater, seawater, and deep-sea sediments) in the western South China Sea (WSCS) for the first time to determine whether PAH pollution increased. The average ∑15PAHs (total concentration of 15 US EPA priority controlled PAHs excluding naphthalene) in the water of WSCS has increased and is higher than the majority of the oceans worldwide due to the synergistic influence of offshore oil extraction, shipping, and river input. The systematic model comparison confirms that the Ksoot-air model can more accurately reflect the gas-particle partitioning of PAHs in the atmosphere of the WSCS. We also found that the vertical migration of the elevating PAHs is accelerated by particulate matter, driving the migration of atmospheric PAHs to the ocean through dry and wet deposition, with 16% being contributed by the particle phase. The particulate matter sinking alters the PAH distribution in the water column and generates variation in source apportionment, while the contribution of PAHs loaded on them (>20%) to the total PAH reserves cannot be ignored as before. Hence, the ecological threat of PAHs increases by the oil drilling and shipping industry, and the driving force of particulate matter deserves continuous attention.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Océanos y Mares , Material Particulado/análisis , China , Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos
4.
Environ Sci Technol ; 57(44): 16974-16988, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37885068

RESUMEN

The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.


Asunto(s)
Ácidos Dicarboxílicos , Compuestos Orgánicos , Ácidos Dicarboxílicos/química , Termodinámica , Aerosoles , Concentración de Iones de Hidrógeno
5.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446934

RESUMEN

Glyoxal and methylglyoxal are important volatile organic compounds in the atmosphere. The gas-particle partitioning of these carbonyl compounds makes significant contributions to O3 formation. In this study, both the gas- and particle-phase glyoxal and methylglyoxal concentrations at the foot and top of Mount Hua were determined simultaneously. The results showed that the gaseous-phase glyoxal and methylglyoxal concentrations at the top were higher than those at the foot of the mountain. However, the concentrations for the particle phase showed the opposite trend. The average theoretical values of the gas-particle partitioning coefficients of the glyoxal and methylglyoxal concentrations (4.57 × 10-10 and 9.63 × 10-10 m3 µg-1, respectively) were lower than the observed values (3.79 × 10-3 and 6.79 × 10-3 m3 µg-1, respectively). The effective Henry's law constants (eff.KH) of the glyoxal and methylglyoxal were in the order of 108 to 109 mol/kgH2O/atm, and they were lower at the foot than they were at the top. The particle/gas ratios (P/G ratios) of the glyoxal and methylglyoxal were 0.039 and 0.055, respectively, indicating more glyoxal and methylglyoxal existed in the gas phase. The factors influencing the partitioning coefficients of the glyoxal and methylglyoxal were positively correlated with the relative humidity (RH) and negatively correlated with the PM2.5 value. Moreover, the partitioning coefficient of the glyoxal and methylglyoxal was more significant at the top than at the foot of Mount Hua.


Asunto(s)
Glioxal , Piruvaldehído , Gases , Compuestos Orgánicos , Atmósfera
6.
J Environ Sci (China) ; 123: 327-340, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521996

RESUMEN

A compilation of new advances made in the research field of laboratory reaction kinetics in China's Key Development Project for Air Pollution Formation Mechanism and Control Technologies was presented. These advances are grouped into six broad, interrelated categories, including volatile organic compound (VOC) oxidation, secondary organic aerosol (SOA) formation, new particle formation (NPF) and gas-particle partitioning, ozone chemistry, model parameters, and secondary inorganic aerosol (SIA) formation, highlighting the laboratory work done by Chinese researchers. For smog chamber applications, the current knowledge gained from laboratory studies is reviewed, with emphasis on summarizing the oxidation mechanisms of long-chain alkanes, aromatics, alkenes, aldehydes/ketones in the atmosphere, SOA formation from anthropogenic emission sources, and oxidation of aromatics, isoprene, and limonene, as well as SIA formation. For flow tube applications, atmospheric oxidation mechanisms of toluene and methacrolein, SOA formation from limonene oxidation by ozone, gas-particle partitioning of peroxides, and sulfuric acid-water (H2SO4-H2O) binary nucleation, methanesulfonic acid-water (MSA-H2O) binary nucleation, and sulfuric acid-ammonia-water (H2SO4-NH3-H2O) ternary nucleation are discussed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Cinética , Limoneno , Aerosoles/análisis , Ozono/química , Contaminación del Aire/prevención & control , Agua , China , Contaminantes Atmosféricos/análisis
7.
Environ Sci Technol ; 56(9): 5440-5447, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35405066

RESUMEN

Emissions of NH3 and nine nitrogen-containing volatile organic compounds (NVOCs) (C1-3-amines, C1-3-amides, and C1-3-imines) from motor vehicles powered by gasoline, diesel, and natural gas under low-speed driving conditions from roadside in situ measurements were characterized using a water-cluster chemical ionization mass spectrometer and trace gas monitors. The total emission strength of diesel trucks was the greatest followed by those of gasoline cars and natural gas cars. NH3 emission per vehicle was found to be 2-3 orders of magnitude greater than that of all NVOCs, regardless of the type of vehicle. Although much lower than the emissions of amides or imines, emissions of amines were sufficient to produce atmospheric concentrations exceeding the threshold level for amines to enhance atmospheric nucleation by several orders of magnitude. Different engine emission reduction technologies (e.g., three-way catalytic converter vs selective catalytic reduction) can lead to different NH3 and NVOC emission profiles. During the lifetime of a vehicle, its emission level was most likely to increase with its mileage. Source profiles of NH3 and NVOC emissions from the three types of vehicles were also obtained from the measurements. These profiles can be a valuable contribution to the air pollution management system in terms of source apportionment, elucidating the emission contributions from a specific type of vehicle.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Amidas , Aminas , Amoníaco , Monitoreo del Ambiente , Gasolina , Iminas , Vehículos a Motor , Gas Natural , Nitrógeno , Emisiones de Vehículos/análisis
8.
Ecotoxicol Environ Saf ; 242: 113866, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839529

RESUMEN

This study focuses on the gas-particle (G-P) partitioning of 16 polycyclic aromatic hydrocarbons (PAHs) from oil combustion, which is one of the important contributors of anthropogenic PAHs but has been rarely studied. The combustions of different types of oils involving ultra-light to heavy oils were investigated, and the PAH partitioning mechanism was determined by the widely used Junge-Pankow adsorption model, Koa absorption model, and dual sorption model, respectively. The results show that the source-specific diagnostic ratios of Ant/(Ant+Phe) are between 0.09 and 0.24, the estimated regression slopes of G-P partition coefficients (KP) of the total PAHs on their sub-cooled liquid vapor pressures (PLO) are in the range of - 0.34 to - 0.25, and the predicted fractions of PAHs in the particle phase (φ) by Koa absorption model are close to the measured values, while the log KPvalues of the LMW PAHs from the combustions of diesel and heavy oil are better represented by the dual sorption model. Our findings indicate that PAHs are derived from mixed sources that include the unburned original oil and combustion products, and the PAH partitioning mechanism is governed by the process of absorption into organic matter because of the unburned oil, but both adsorption and absorption exist simultaneously in the lighter PAHs from the combustions of heavier oils (i.e., diesel and heavy oil). Based on these findings, the understanding of the fate and transport of PAH emissions and the optimization of the emergency responses to accidents such as marine oil spills would be potentially improved.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Adsorción , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Gases/análisis , Aceites , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
9.
J Environ Manage ; 317: 115456, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751260

RESUMEN

Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs were collected over a year at a traffic dominated site in Agra, to determine the dominant partitioning mechanism. During the entire sampling period, total PAHs and Nitro-PAHs were 3465 ± 3802 and 26.1 ± 25.9 ng m-3 respectively. The gas-particle partitioning behavior of PAHs was studied by applying the Pankow model, Absorption model, and Dual model. Amongst all the partitioning models, the Dual model fits well and indicates that the partitioning of PAHs at the traffic site in Agra depends on both the physical adsorption of PAHs on the Total Suspended Particulate (TSP) surface and absorption of PAHs into the organic layer present on the TSP surface. Pankow model indicates that PAHs are emitted from the source close to the sampling point and due to this PAHs do not get enough time to get partitioned in between both the phases. Incremental lifetime Cancer Risk (ILCR) shows that adults and children are more prone to cancer risk in comparison to infants for both PAHs and Nitro-PAHs. Cancer risk by inhalation was minimum in comparison to both ingestion and dermal exposure. Nitro-PAHs in the particulate phase were high enough to exceed the minimum permissible limit (10-6) of causing cancer by ingestion and dermal exposure.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Adulto , Contaminantes Atmosféricos/análisis , Niño , Carbón Mineral , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Medición de Riesgo
10.
Bull Environ Contam Toxicol ; 108(4): 652-657, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35238990

RESUMEN

Based on air samples within 24 h after snowfall, gaseous and particulate concentrations of 16 priority PAHs were obtained, which provided a good opportunity to study the temporal trend of atmospheric PAHs. An obvious temporal trend with atmospheric concentration was observed, which was mainly influenced by emission sources. It was found that the maximum concentration (Σ16PAHs) was 272.8 ng/m3, appeared in the rush hour of traffic. To the contrary, the minimum concentration was 82.39 ng/m3 at the period with the least anthropogenic activities. The values of particle-phase fraction[Formula: see text]) and G/P partitioning quotient (log K P) were increased along with molecular weight of PAHs. However, for individual PAHs, the differences with [Formula: see text] and log K P were not obvious within 24 h. Furthermore, similar statistically significant positive correlations were found between log K P and log K OA among different periods. According to the short sampling program, chemical properties should be the major influencing factor for the temporal trend of G/P partitioning. The results of the case study provided new insights into the research field of G/P partitioning of PAHs.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Nieve
11.
J Environ Sci (China) ; 119: 106-118, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934455

RESUMEN

The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Aerosoles , Contaminantes Atmosféricos/análisis , Polvo , Monitoreo del Ambiente/métodos , Gases , Mercurio/análisis
12.
Environ Sci Technol ; 55(11): 7307-7315, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000801

RESUMEN

Acidity profoundly affects almost every aspect that shapes the composition of ambient particles and their environmental impact. Thermodynamic analysis of gas-particle composition datasets offers robust estimates of acidity, but they are not available for long periods of time. Fog composition datasets, however, are available for many decades; we develop a thermodynamic analysis to estimate the ammonia in equilibrium with fog water and to infer the pre-fog aerosol pH starting from fog chemical composition and pH. The acidity values from the new method agree with the results of thermodynamic analysis of the available gas-particle composition data. Applying the new method to historical (25 years) fog water composition at the rural station of San Pietro Capofiume (SPC) in the Po Valley (Italy) suggests that the aerosol has been mildly acidic, with its pH decreasing by 0.5-1.5 pH units over the last decades. The observed pH of the fog water also increased 1 unit over the same period. Analysis of the simulated aerosol pH reveals that the aerosol acidity trend is driven by a decrease in aerosol precursor concentrations, and changes in temperature and relative humidity. Currently, NOx controls would be most effective for PM2.5 reduction in the Po valley both during summer and winter. In the future, however, seasonal transitions to the NH3-sensitive region may occur, meaning that the NH3 reduction policy may become increasingly necessary.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Italia , Material Particulado/análisis , Estaciones del Año , Agua
13.
J Environ Sci (China) ; 102: 123-137, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33637238

RESUMEN

To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols, hourly mass concentrations of water-soluble inorganic ions (WSIIs) in PM2.5 and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing. Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined, some related parameters were characterized. The (TNH3) Rich was also defined to describe the variations of the excess NH3 in different seasons. In addition, a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning. In Beijing, the relative contribution of nitrate to PM2.5 has increased markedly in recent years, especially under polluted conditions. In the four seasons, only a small portion of NO2 in the atmosphere was converted into total nitrate (TNO3), and more than 80% of TNO3 occurred in the form of nitrate due to the abundant ammonia. The concentration of total ammonia (TNH3) was much higher than that required to neutralize acid gases, and most of the TNH3 occurred as gaseous NH3. The nitrous acid (HONO) concentration was highly correlated with NH3 concentration and had increased significantly in Beijing compared with previous studies. The total chloride (TCl) was the highest in winter, and ε(Cl-) was more sensitive to variations in the ambient temperature (T) and relative humidity (RH) than ε(NO3-).


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , China , Monitoreo del Ambiente , Gases/análisis , Material Particulado/análisis , Estaciones del Año , Agua
14.
Atmos Environ (1994) ; 2232020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32577088

RESUMEN

The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).

15.
J Environ Sci (China) ; 88: 370-384, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31862078

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the atmosphere and they mostly stem from the imperfect combustion of fossil fuels and biofuels. PAHs are inherently associated with homogenous fine particles or distributed to different-sized particles during the aging of air masses. PAHs carried by fine particles undergo a long-range transport to remote areas while those adsorbed on coarse particles have a shorter lifetime in ambient air. More importantly, PAHs with higher molecular weights tend to be bound with finer particles and can deeply enter the lungs, posing severe health risks to humans. Thus, the environmental fate and health effects of particulate PAHs are strongly size-dependent. This review summarizes the size distributions of particulate PAHs freshly emitted from combustion sources as well as the distribution patterns of PAHs in ambient particles. It was found that PAHs from stationary sources are primarily bound to fine particles, which are slightly larger than particles to which PAHs from mobile sources are bound. In ambient air, particulate PAHs are distributed in larger size modes than those in the combustion fume, and the particle size decreases with PAH molecular weight increasing. The relevant mechanisms and influencing factors of particle size distribution changes are illustrated in this article, which are essentially attributed to combustion and ambient temperature as well as the physical and chemical properties of PAHs. Overall, the study on the particle size distribution of PAHs will contribute for a full understanding of the origin, atmospheric behaviors and health effects of particulate PAHs.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Humanos , Tamaño de la Partícula , Material Particulado , Humo
16.
Indoor Air ; 29(4): 645-655, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004533

RESUMEN

Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first-ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state-of-the-art semivolatile thermal-desorption aerosol gas chromatography (SV-TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time-series data are characterized by temperature-dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.


Asunto(s)
Contaminación del Aire Interior/análisis , Vivienda , Compuestos Orgánicos Volátiles/análisis , California , Materiales de Construcción , Culinaria , Monitoreo del Ambiente/métodos , Humanos , San Francisco , Ventilación
17.
Indoor Air ; 29(3): 460-468, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30807668

RESUMEN

Nitrate and ammonium ions are major constituents of outdoor PM2.5 . Human exposure to these ions occurs primarily indoors. To assess the adverse outcomes from exposure to them, it is necessary to quantify the relationships between outdoor and indoor PM2.5 nitrate and ammonium. The relationships for the two semi-volatile ions are more complex than those of non-volatile PM2.5 constituents (eg, sulfate, elemental carbon). This study presents a mechanistic description of their outdoor-indoor relationships that incorporates a dynamic gas-particle partitioning and key parameters such as the pH and water content of PM2.5 . Compared to measurements of nitrate and ammonium, the model has normalized mean biases of -9% and -42% and correlation coefficients of 0.95 and 0.68 for nitrate and ammonium, respectively. This suggests satisfactory agreement for nitrate, but less strong for ammonium. Sensitivity analysis on key parameters indicates that the model generally works well across a range of values typical of indoor settings. The model's performance is sensitive to pH and water content in PM2.5 , which control the gas-particle partitioning process. Indoor PM2.5 tends to be more acidic than outdoor PM2.5 , raising potential health concern. The model provides insights in exposure assessment, source apportionment, and health-composition attribution of indoor PM2.5 .


Asunto(s)
Contaminantes Atmosféricos/análisis , Compuestos de Amonio/análisis , Exposición a Riesgos Ambientales/análisis , Nitratos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Humanos
18.
Indoor Air ; 29(5): 761-779, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31264732

RESUMEN

The air composition and reactivity from outdoor and indoor mixing field campaign was conducted to investigate the impacts of natural ventilation (ie, window opening and closing) on indoor air quality. In this study, a thermal desorption aerosol gas chromatograph (TAG) obtained measurements of indoor particle- and gas-phase semi- and intermediately volatile organic compounds both inside and outside a single-family test home. Together with measurements from a suite of instruments, we use TAG data to evaluate changes in indoor particles and gases at three natural ventilation periods. Positive matrix factorization was performed on TAG and adsorbent tube data to explore five distinct chemical and physical processes occurring in the indoor environment. Outdoor-to-indoor transport is observed for sulfate, isoprene epoxydiols, polycyclic aromatic hydrocarbons, and heavy alkanes. Dilution of indoor species is observed for volatile, non-reactive species including methylcyclohexane and decamethylcyclopentasiloxane. Window opening drives enhanced emissions of semi- and intermediately volatile species including TXIB, DEET, diethyl phthalate, and carvone from indoor surfaces. Formation via enhanced oxidation was observed for nonanal and 2-decanone when outdoor oxidants entered the home. Finally, oxidative depletion of gas-phase terpenes (eg, limonene and α-pinene) was anticipated but not observed due to limited measurement resolution and dynamically changing conditions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Ventilación/métodos , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Gases , Vivienda , Humanos , Missouri , Tamaño de la Partícula , Material Particulado , Ácidos Ftálicos/análisis , Hidrocarburos Policíclicos Aromáticos
19.
J Aerosol Sci ; 107: 9-13, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-31213727

RESUMEN

Aerosols created by electronic cigarettes are suspensions of liquid droplets in a gas phase. All of the volatile or semi-volatile compounds in the system will partition between both phases; among these compounds are the "e-liquid" constituents plus the degradation products such as formaldehyde produced during "vaping". This partitioning affects deposition in the respiratory tract and optimal analytical method design. Theory can be used to predict the particle- vs. gas-phase distribution of each compound as a function of the composition of the aerosol droplets, temperature, and the vapor pressure of the compound. As an example, even at the highest total particulate matter (TPM, µg/m3) levels for e-cigarette aerosols, formaldehyde as CH2O will be mostly in the gas phase; two important adducts of formaldehyde will be mostly in the aerosol droplets even at the lowest TPM levels.

20.
J Environ Sci (China) ; 40: 92-104, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26969549

RESUMEN

Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or ß-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/análisis , Ciclohexenos/análisis , Monitoreo del Ambiente/métodos , Francia , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Gases/química , Limoneno , Región Mediterránea , Monoterpenos/análisis , Oxidación-Reducción , Esmog/análisis , Terpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA