Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 44(2): 255-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36658718

RESUMEN

As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.


Asunto(s)
, Residuos
2.
Extremophiles ; 28(1): 11, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240933

RESUMEN

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.


Asunto(s)
Halomonadaceae , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Floculación , Carbón Mineral , Fenol/análisis , Fenoles , Reactores Biológicos
3.
Environ Sci Technol ; 58(5): 2528-2541, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266239

RESUMEN

Resource recovery from wet organic wastes can support circular economies by creating financial incentives to produce renewable energy and return nutrients to agriculture. In this study, we characterize the potential for hydrothermal liquefaction (HTL)-based resource recovery systems to advance the economic and environmental sustainability of wastewater sludge, FOG (fats, oils, and grease), food waste, green waste, and animal manure management through the production of liquid biofuels (naphtha, diesel), fertilizers (struvite, ammonium sulfate), and power (heat, electricity). From the waste management perspective, median costs range from -193 $·tonne-1 (FOG) to 251 $·tonne-1 (green waste), and median carbon intensities range from 367 kg CO2 eq·tonne-1 (wastewater sludge) to 769 kg CO2 eq·tonne-1 (green waste). From the fuel production perspective, the minimum selling price of renewable diesel blendstocks are within the commercial diesel price range (2.37 to 5.81 $·gal-1) and have a lower carbon intensity than petroleum diesel (101 kg CO2 eq·MMBTU-1). Finally, through uncertainty analysis and Monte Carlo filtering, we set specific targets (i.e., achieve wastewater sludge-to-biocrude yield >0.440) for the future development of hydrothermal waste management system components. Overall, our work demonstrates the potential of HTL-based resource recovery systems to reduce the costs and carbon intensity of resource-rich organic wastes.


Asunto(s)
Eliminación de Residuos , Aguas Residuales , Animales , Aguas del Alcantarillado , Dióxido de Carbono/análisis , Alimentos , Biocombustibles/análisis , Carbono
4.
Environ Res ; 252(Pt 2): 118597, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462091

RESUMEN

Particle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock characteristics (moisture, volatile matter, fixed carbon, and ash contents) during the particle feeding stage. Various biomass wastes (date palm waste, olive pomace and sewage sludge) at diverse compositions and sizes are subjected to empirical determination of mass flow rates (MFR), power ratings, and storage times for each feedstock. The preheating process in the gasifier is considered, employing both an approximation and analytical solution. In addition, the influence of the equivalence ratio (ER) on the syngas yield is analyzed. The collected data reveals that for average particle size of 200 µm, the highest MFR (in g/min) are 0.518 ± 0.033, 7.691 ± 0.415, and 16.111 ± 1.050, for palm wood biomass, olive pomace and sewage sludge, respectively. Smaller particles (80 µm) led to extended storage times. Moreover, the lumped capacitance approximation method consistently underestimates preheating time, with a percentage error of 6.26%-17.08%. Response surface methodology (RSM) optimization analysis provides optimal gasification conditions for palm wood biomass, olive pomace, and sewage sludge with maximum cold gas efficiencies (CGEs) of 58.01%, 63.29%, and 52.27%. The peak conversion was attained at gasification temperatures of 1089.83 °C, 1151.93 °C, and 1102.91 °C for palm wood biomass, olive pomace, and sewage sludge, respectively. In addition, gasification equilibrium model determined optimal gasification temperatures as 1150 °C for palm biomass, 1200 °C for olive pomace, and 1150 °C for sewage sludge with respective syngas efficiencies of 59.62%, 64.13%, and 53.66%. Consequently, the examination of the dosing procedure, preheating dynamics, particle dimensions, ER, storage time, and their combined impacts offer practical insights to effectively control downdraft gasifiers in handling a variety of feedstocks.


Asunto(s)
Biomasa , Tamaño de la Partícula , Olea/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/análisis , Gases/análisis
5.
Environ Res ; 247: 118244, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266901

RESUMEN

The usage and disposal of highly abundant single-use and multilayered plastics contribute to significant ecological problems. The thermochemical recovery of these plastics to useful products and chemicals provides opportunity for positive economic and environmental impacts. Most previous research use idealised and unrepresentative feedstocks. To address this, various mixed waste plastics collected from the rejected fraction of a municipal waste recovery facility in Ghana were pyrolyzed at varying temperatures of 450, 500 and 550 °C and their yields compared. The obtained chemical products were analysed using several different techniques. Energy and carbon balances of the processes were produced using the CHNS and energy content of the oil fraction and the compositional results of the pyrolysis gas fraction, the latter of which was measured by Gas Chromatography Thermal Conductivity Detection (GC-TCD). The oils were further assessed via Gas Chromatography Mass Spectrometry (GC-MS) to identify the available valuable compounds. The formed oil contained approximately 40% light hydrocarbons (C6 - C11), 18% middle hydrocarbons (C11 - C16) and 42% heavy hydrocarbon compounds (C16+). The optimal oil yield of 65.9 ± 0.5% and low heating value of 44.7 ± 0.1 MJ/kg for single-use plastics were recorded at highest heating temperatures of 550 and 500 °C, respectively. The findings provide indication that pyrolysis is a fitting solution for energy recovery from waste plastics.


Asunto(s)
Hidrocarburos , Plásticos , Aceites , Calor , Temperatura
6.
Environ Res ; 242: 117741, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007075

RESUMEN

Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.


Asunto(s)
Oryza , Gases , Temperatura , Biomasa , India
7.
Environ Res ; 251(Pt 1): 118643, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458590

RESUMEN

Coal gasification fine slag (CGFS), as a difficult-to-dispose solid waste in the coal chemical industry, consists of minerals and residual carbon. Due to the aggregate structure of minerals blocking pores and encapsulating active substances, the high-value utilization of CGFS still remains a challenge. Based on the intrinsic characteristics of CGFS, this study synthesized Fe-N doped porous carbon/silicate composites (Fe-NC) by alkali activation and pyrolysis for electrocatalytic degradation of phenolic wastewater. Meanwhile, minerals were utilized to regulate the surface chemical and pore structure, turning their disadvantages into advantages, which caused a sharp increase in m-cresol mineralization. The positive effect of minerals on composite properties was investigated by characterization techniques, electrochemical analyses and density functional theory (DFT) calculations. It was found that the mesoporous structure of the mineral-regulated composites was further developed, with more carbon defects and reactive substances on its surface. Most importantly, silicate mediated iron conversion through strong interaction with H2O2, high work function gradient with electroactive iron, and excellent superoxide radical (•O2-) production capacity. It effectively improved the reversibility and kinetics of the entire electrocatalytic reaction. Within the Fe-NC311 electrocatalytic system, the m-cresol removal rate reached 99.55 ± 1.24%, surpassing most reported Fe-N-doped electrocatalysts. In addition, the adsorption and electrooxidation experiment confirmed that the synergistic effect of Fe-N doped porous carbon and silicate simultaneously promoted the capture of pollutants and the transformation of electroactive molecules, and hence effectively shortened the diffusion path of short-lived radicals, which was further supported by molecular dynamics simulation. Therefore, this research provides new insights into the problem of mineral limitations and opens an innovative approach for CGFS recycling and environmental remediation.


Asunto(s)
Carbono , Hierro , Fenoles , Silicatos , Aguas Residuales , Contaminantes Químicos del Agua , Silicatos/química , Aguas Residuales/química , Carbono/química , Porosidad , Hierro/química , Contaminantes Químicos del Agua/química , Fenoles/química , Catálisis , Carbón Mineral , Minerales/química , Nitrógeno/química , Eliminación de Residuos Líquidos/métodos , Técnicas Electroquímicas/métodos , Residuos Industriales/análisis
8.
Environ Res ; 248: 118311, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278511

RESUMEN

To address the solid waste challenges associated with coal gasification fine ash, this study conducted a low-temperature alkali fusion de-ashing treatment to transform coal gasification fine ash into mineral-carbon adsorbent. The preparation process was simplified without grinding, carbonization and high-temperature (500-800 °C) activation treatment. The results demonstrate a positive linear correlation between the ash removal rate of the samples (measured during the preparation process, i.e., low-temperature alkaline fusion treatment of coal gasification fine ash) and their maximum equilibrium adsorption capacity for methylene blue. For the samples with an ash removal rate of 95.71 %, which exhibit a maximum adsorption capacity of 161.36 mg/g for methylene blue. The adsorption behavior of methylene blue on mineral-carbon adsorbent was a monolayer adsorption on the surface of homogeneous medium, involving both physical and chemical adsorption. The main adsorb rate-controlling steps for the samples with ash removal rates of 27.91-59.33 % and 95.71 % were the intra particle diffusion process and the liquid film diffusion process, respectively. The adsorption mechanism of methylene blue on the surface of mineral-carbon adsorbent involved electrostatic attraction and hydrogen bonding. The aforementioned results demonstrated the potential of coal gasification fine ash as an adsorbent material, providing new options for promoting the resource utilization and high-value applications of coal gasification fine ash.


Asunto(s)
Ceniza del Carbón , Contaminantes Químicos del Agua , Temperatura , Adsorción , Carbono , Azul de Metileno , Carbón Mineral , Minerales , Cinética
9.
Environ Res ; 249: 118463, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342201

RESUMEN

During gasification the kinetic and thermodynamic parameter depend on both the feedstock and the process conditions. As a result, one needs to enhance the understanding of how to model numerically these parameters using thermogravimetric analyzer. Consequently, there exists a pressing need to computationally devise gasification model that can efficiently account to thermodynamic and kinetic parameter from thermogravimetric data. In this study, we numerically model gasification process kinetic and thermodynamic parameters, which vary with feedstock and operational conditions. Our novel approach involves creating an ANN model in MATLAB using a carefully optimized 8-20-20-10-1 architecture. Based on thermogravimetric analyzer (TGA) data, this model uniquely predicts critical kinetic (activation energy, pre-exponential factor) and thermodynamic parameters (entropy, enthalpy, Gibbs free energy, ignition index, boiling temperature). Our ANN model, trained on over 80 diverse samples with the Levenberg-Marquardt algorithm, excels at prediction, with an MSE of 6.185e-6 and an R2 value exceeding 0.9996, ensuring highly accurate estimates. Based on time, temperature, heating rate, and elemental composition, it accurately predicts thermal degradation. The model can predict TGA curves for many materials, demonstrating its versatility. For instance, it accurately estimates the activation energy for pure glycerol at 73.84 kJ/mol, crude glycerol at 67.55 kJ/mol, 12.12 kJ/mol for coal, and 111.3 kJ/mol for wood. These results, particularly for Kissinger-validated glycerol, demonstrate the model's versatility and efficacy in various gasification scenarios, making it a valuable tool for thermochemical conversion studies.


Asunto(s)
Redes Neurales de la Computación , Termogravimetría , Termogravimetría/métodos , Termodinámica , Cinética , Modelos Químicos
10.
Environ Res ; 246: 118027, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159670

RESUMEN

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Asunto(s)
Compuestos de Alumbre , Gases , Aguas del Alcantarillado , Gases/química , Aceite de Palma , Temperatura , Biomasa
11.
J Environ Manage ; 366: 121717, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981274

RESUMEN

Sorption enhanced steam gasification of biomass (SESGB) presents a promising approach for producing high-purity H2 with potential for zero or negative carbon emissions. This study investigated the effects of gasification temperature, CaO to carbon in biomass molar ratio [CaO/C], and steam flow on the SESGB process, employing carbide slag (CS) and its modifications, CSSi2 (mass ratio of CS to SiO2 is 98:2) and CSCG5 (mass ratio of CS to coal gangue (CG) is 95:5), as CaO-based sorbents. The investigation included non-isothermal and isothermal gasification experiments and kinetic analyses using corn cob (CC) in a macro-weight thermogravimetric setup, alongside a fixed-bed pyrolysis-gasification system to assess operational parameter effects on gas product. The results suggested that CO2 capture by CaO reduced the mass loss during the main gasification as the [CaO/C] increased. The appropriate temperature for SESGB process should be selected between 550 and 700 °C at atmospheric pressure. The appropriate amount of sorbent or steam could facilitate the gasification reaction, but excessive addition led to adverse effects. Operational parameters influenced the apparent activation energy (Ea) by affecting various gasification reactions. For each test, Ea at the char gasification stage was significantly higher than that at the rapid pyrolysis stage. The addition of CS notably increased H2 concentration and yield, while sharply reducing CO2 levels. H2 concentration initially rose and then fell with greater steam flow, peaking at 76.11 vol% for a steam flow of 1.0 g/min. H2 yield peaked at 298 mL/g biomass with a steam flow of 1.5 g/min, a gasification temperature of 600 °C and a [CaO/C] of 1.0. Increasing gasification temperature remarkably boosted the H2 and CO2 yields. Optimal conditions for the SESGB using CS as a sorbent, determined via response surface methodology (RSM), include a gasification temperature of 666 °C, a [CaO/C] of 1.99, and a steam flow of 0.5 g/min, under which H2 and CO2 yields were 464 and 48 mL/g biomass, respectively. CSSi2 and CSCG5 demonstrated excellent cyclic H2 production stability, maintaining H2 yields around 440 mL/g biomass and low CO2 yields (∼60 mL/g biomass) across five cycles. The study results offer new insights for the high-value utilization of agroforestry biomass and the reduction and resource utilization of industrial waste.

12.
J Environ Manage ; 364: 121385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875979

RESUMEN

Biosolids is a by-product of wastewater treatment that needs to be further processed. Traditional biosolids treatment and disposal technologies are inefficient under the current demanding standards. Thermochemical conversion technologies have been employed for biosolids management, with gasification being the most promising due to the production of syngas, a gaseous product that may be used for the production of energy or high-added-value substances through reforming reactions. Gasification is a complex thermochemical process; its performance and yield are strongly affected by the type of feedstock, but also by the system configuration and process conditions. Gasification usually takes place at temperatures between 700 and 1,200 °C, but it may also occur at lower temperatures (above 375 °C: supercritical water gasification) or at higher temperatures (above 3,000 °C: plasma gasification). The present review briefly presents the biosolids management practices, focusing on the gasification process and syngas treatment, while the state of the art in biosolids gasification is critically presented and discussed. A number of types of gasifiers (more frequently fluidized bed, but also fixed bed, rotary kiln, downdraft, etc.), gasifying agents, and operational conditions have been used for biosolids gasification. The key results of the study regarding biosolids gasification are: (i) the increase of temperature and equivalence ratio enhances the gasification performance, resulting in high syngas yield and quality, high cold gas efficiency, and low tar and char production; (ii) the calorific value of the obtained syngas tends to decrease with the increase of equivalence ratio; and (iii) the use of catalysts has been proven to substantially improve the gasification performance, compared to non-catalytic gasification. The proper selection of technical parameters determines the effectiveness of biosolids gasification, which is considered as a promising technology for the energy recovery from biosolids, so to upgrade wastewater treatment and improve environmental quality.


Asunto(s)
Gases , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
13.
J Environ Manage ; 366: 121856, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032256

RESUMEN

Efficient domestic wastewater management is essential for mitigating the impact of wastewater on human health and the environment. Wastewater management with conventional technologies generates sewage sludge. The present study considered a modelling approach to evaluate various processing pathways to produce energy from the sewage sludge. Anaerobic digestion, gasification, pyrolysis, and hydrothermal liquefaction are analysed in terms of their energy generation potentials with the Aspen Plus software. A techno-economic assessment is performed to assess the economic viability of each pathway. It reveals that gasification appears as the most promising method to produce electricity, with 0.76 kWh/kgdrysludge, followed by anaerobic digestion (0.53 kWh/kgdrysludge), pyrolysis (0.34 kWh/kgdrysludge), and hydrothermal liquefaction (0.13 kWh/kgdrysludge). In contrast, the techno-economic analysis underscores the viability of anaerobic digestion with levelized cost of electricity as 0.02 $/kWh followed by gasification (0.11 $/kWh), pyrolysis (0.14 $/kWh), and hydrothermal liquefaction (2.21 $/kWh). At the same time, if the products or electricity from the processing unit is sold, equivalent results prevail. The present study is a comprehensive assessment of sludge management for researchers and policymakers. The result of the study can also assist policymakers and industry stakeholders in deciding on alternative options for energy recovery and revenue generation from sewage sludge.

14.
J Environ Manage ; 365: 121441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897076

RESUMEN

In response to environmental concerns at the global level, there is considerable momentum in the exploration of materials derived from waste that are both sustainable and eco-friendly. In this study, CS-Fe (carbon, silica, and iron) composite was synthesized from coal gasification slag (CGS) and innovatively applied as a catalyst to activate PS (persulfate) for the degradation of trichloroethylene (TCE) in water. Scanning electron microscope (SEM), fourier transmission infrared spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS), brunauer, emmet, and teller (BET) technique, and x-ray diffractometer (XRD) spectra were employed to investigate the surface morphology and physicochemical composition of the CS-Fe composite. CS-Fe catalyst showed a dual nature by adsorption and degradation of TCE simultaneously, displaying 86.1% TCE removal in 3 h. The synthesized CS-Fe had better adsorption (62.1%) than base material CGS (36.4%) due to a larger BET surface area (770.8 m2 g-1), while 24.0% TCE degradation was recorded upon the activation of PS by CS-Fe. FTIR spectra confirmed the adsorption and degradation of TCE by investigating the used and fresh samples of CS-Fe catalyst. Scavengers and Electron paramagnetic resonance (EPR) analysis confirmed the availability of surface radicals and free radicals facilitated the degradation process. The acidic nature of the solution favored the degradation while the presence of bicarbonate ion (HCO3-) hindered this process. In conclusion, these results for real groundwater, surfactant-added solution, and degradation of other TCE-like pollutants propose that the CS-Fe composite offers an economically viable and favorable catalyst in the remediation of organic contaminants within aqueous solutions. Further investigation into the catalytic potential of coal gasification slag-based carbon materials and their application in Fenton reactions is warranted to effectively address a range of environmental challenges.


Asunto(s)
Carbón Mineral , Hierro , Tricloroetileno , Tricloroetileno/química , Hierro/química , Contaminantes Químicos del Agua/química , Adsorción , Catálisis , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Environ Manage ; 365: 121628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955040

RESUMEN

To address the challenges posed by solid waste generated from coal gasification ash, a pyrolysis self-activation method was employed to prepare activated carbon by gasification ash, followed by the modification with manganese oxide to enhance its adsorption performance. Subsequently, the removal efficiency and mechanism for copper citrate were investigated. The results demonstrated the successful preparation of manganese oxides modified gasification ash-derived activated carbon (GAC-MnOx), exhibiting a specific surface area of 158.3 m2/g and a pore volume of 0.1948 cm³/g. The kinetic process could be described by the pseudo-second-order kinetic model (R2 = 0.958). High removal efficiency and low concentration of dissolved Mn were observed within the pH range of 3-10, where the adsorption capacity of GAC-MnOx for copper citrate exhibited an inverse relationship with pH. Notably, the fitting results of the Langmuir model demonstrated that the maximum adsorption capacity of GAC-MnOx for copper citrate is determined to be 7.196 mg/g at pH 3. The adsorption capacity of GAC-MnOx was found to be significantly reduced to 0.26 mg/g as the pH decreased below 2, potentially attributed to the dissolution of Mn. The findings of the Dual-Mode model demonstrated that the copper citrate removal mechanism by GAC-MnOx involved both surface adsorption and precipitation processes as follows: the porous structure of activated carbon enables physical adsorption of copper citrate, the MnOx or oxygen-containing functional groups establish chemical bonds with copper citrate and subsequently precipitate onto the surface of the adsorbent. The physical adsorption remains predominant in the removal of copper citrate, despite a gradual decrease in its proportion with increasing pH and equilibrium concentrations. Moreover, the X-ray photoelectron spectroscopy results indicated that copper citrate might be oxidized by MnOx to release copper ions and be retained on the surface of the adsorbent, meaning the adsorption efficiency of Cu(II)-Cit by GAC was enhanced through MnOx oxidation. This study could provide a new strategy for the high-value resource utilization of gasification ash.


Asunto(s)
Compuestos de Manganeso , Óxidos , Adsorción , Compuestos de Manganeso/química , Óxidos/química , Carbono/química , Carbón Orgánico/química , Cinética , Cobre/química , Concentración de Iones de Hidrógeno
16.
J Environ Manage ; 358: 120836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593741

RESUMEN

Supercritical water gasification technology provides a favorable technology to achieve pollution elimination and resource utilization of phenolic wastewater. In this study, the reaction mechanism of phenolic wastewater supercritical water gasification was investigated using a combination of experimental and computational methods. Five reaction channels were identified to elucidate the underlying pathway of phenol decomposition. Importantly, the rate-determining step was found to be the dearomatization reaction. By integrating computational and experimental analyses, it was found that phenol decomposition via the path with the lowest energy barrier generates cyclopentadiene, featuring a dearomatization barrier of 70.97 kcal/mol. Additionally, supercritical water plays a catalytic role in the dearomatization process by facilitating proton transfer. Based on the obtained reaction pathway, alkali salts (Na2CO3 and K2CO3) are employed as a catalyst to diminish the energy barrier of the rate-determining step to 40.00 kcal/mol and 37.14 kcal/mol. Alkali salts catalysis significantly improved carbon conversion and pollutant removal from phenolic wastewater, increasing CGE from 58.44% to 93.55% and COD removal efficiency from 94.11% to 99.79%. Overall, this study provides a comprehensive understanding of the decomposition mechanism of phenolic wastewater in supercritical water.


Asunto(s)
Aguas Residuales , Aguas Residuales/química , Catálisis , Fenoles/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Agua/química
17.
J Environ Manage ; 356: 120737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537462

RESUMEN

Public acceptance plays an essential role in successfully constructing and operating innovative and evolving technologies that promote ecological sustainability and pollution reduction. The present study investigates the factors influencing public acceptance of plastic waste-to-energy gasification projects. The research added social trust and health consciousness to the theory of planned behavior. Using the structural equation modeling, 513 valid survey questionnaire responses from the Beijing-Tianjin-Hebei region, China, were analyzed. The most notable results reveal that attitude, social norms, and perceived behavioral control have a major impact on the public acceptability of the initiative. There was no correlation between social trust and public support for the project. Social trust affects public acceptance of the project through attitude. Health consciousness was shown to be favorably connected with public approval of the project both directly and indirectly through attitude. This study serves policymakers and stakeholders with robust policy recommendations to promote public acceptance of plastic waste-to-energy gasification schemes and other hazardous facilities.


Asunto(s)
Estado de Conciencia , Confianza , Actitud , China , Encuestas y Cuestionarios , Humanos
18.
J Environ Manage ; 356: 120666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490005

RESUMEN

The persistent combustion of fossil fuels has resulted in a widespread greenhouse effect attributable to the continual elevation of carbon dioxide (CO2) levels in the atmosphere. Recent research indicates that utilizing CO2 as a pyrolysis gasification medium diminishes CO2 emissions and concurrently augments the value of the resultant pyrolysis gasification products. This paper reviews recent advancements in the pyrolysis gasification of organic solid wastes under a CO2 atmosphere. Meanwhile, the mechanisms of CO2 influence in the pyrolysis and gasification processes were also discussed. In comparison to noble gases, CO2 exhibits reactivity with char at≥710 °C, resulting in additional mass loss of the sample. In addition, CO2 was able to increase the specific surface area and stability of biochar and reduce biooil toxicity by lowering the content of cyclic compounds in the biooil, while CO2 was able to react with GPRs with some volatile products (e.g., light hydrocarbons) to increase biogas yield. Finally, CO2 also prevents catalyst deactivation by reducing secondary coke formation. We also recommend directing future attention toward utilizing unpurified CO2 in pyrolysis and gasification. This review aims to expand the utilization of CO2 and advocate for applying pyrolysis gasification products.


Asunto(s)
Dióxido de Carbono , Pirólisis , Fenómenos Químicos , Catálisis , Residuos Sólidos
19.
J Environ Manage ; 357: 120760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581891

RESUMEN

It is of great significance to solve the environmental problems caused by the unreasonable treatment of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy from low-carbon fine slag with petroleum coke as reducing agent in a plasma furnace with an alternating current magnetic field, which solved the problem of the high reactivity requirement of carbon reductant for plasma smelting. The optimum carbon content of the mixed low-carbon fine slag and petroleum coke is 105% of the theoretical value. As the strength of the alternating current magnetic field increased (from 0% to 100% of the maximum power), the yield of the alloy (from 25.46% to 58.19%) and the recovery ratios of each element (Si, Fe, Al, Ca, Ti) increased. In addition, as the magnetic field strength increased, the pores inside the alloy became smaller, the composition of the alloy became more homogeneous, and a better separation of the alloy from the slag was observed. The main composition of the alloy at the strongest alternating current magnetic field is Si: 51.14 wt%, Fe: 28.41 wt%, Al: 9.14 wt%, Ca: 7.15 wt%, Ti: 2.03 wt%. We attribute the enhanced smelting effect of the alternating current magnetic field to the resistive heat and Lorentz force produced by the induced current. In addition, the skin effect concentrated the induced current on the surface of the oxide particles and carbon particles, which increased the temperature of the reaction interface and promoted the carbothermal reduction reaction.


Asunto(s)
Coque , Petróleo , Carbón Mineral , Aleaciones , Carbono
20.
Molecules ; 29(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398661

RESUMEN

Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies. Cost-effective and sustainable catalysts with high catalytic activity for supercritical water gasification are increasingly becoming a focal point of interest. In this research study, novel wet-impregnated nickel-based catalysts supported on carbon-negative hydrochar obtained from hydrothermal liquefaction (HTL-HC) and hydrothermal carbonization (HTC-HC) of canola straw, along with other nickel-supported catalysts such as Ni/Al2O3, Ni/ZrO2, Ni/CNT, and Ni/AC, were synthesized for gasification of canola straw on previously optimized reaction conditions of 500 °C, 60 min, 10 wt%, and 23-25 MPa. The order of hydrogen yield for the six supports was (10.5 mmol/g) Ni/ZrO2 > (9.9 mmol/g) Ni/Al2O3 > (9.1 mmol/g) Ni/HTL-HC > (8.8 mmol/g) Ni/HTC-HC > (7.7 mmol/g) Ni/AC > (6.8 mmol/g) Ni/CNT, compared to 8.1 mmol/g for the non-catalytic run. The most suitable Ni/ZrO2 catalyst was further modified using promotors such as K, Zn, and Ce, and the performance of the promoted Ni/ZrO2 catalysts was evaluated. Ni-Ce/ZrO2 showed the highest hydrogen yield of 12.9 mmol/g, followed by 12.0 mmol/g for Ni-Zn/ZrO2 and 11.6 mmol/g for Ni-K/ZrO2. The most suitable Ni-Ce/ZrO2 catalysts also demonstrated high stability over their repeated use. The superior performance of the Ni-Ce/ZrO2 was due to its high nickel dispersion, resilience to sintering, high thermal stability, and oxygen storage capabilities to minimize coke deposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA