RESUMEN
Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.
Asunto(s)
Aprendizaje Automático , Plásmidos , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Biología Computacional/métodos , AlgoritmosRESUMEN
BACKGROUND: Implementing genomic sequencing into newborn screening programs allows for significant expansion in the number and scope of conditions detected. We sought to explore public preferences and perspectives on which conditions to include in genomic newborn screening (gNBS). METHODS: We recruited English-speaking members of the Australian public over 18 years of age, using social media, and invited them to participate in online focus groups. RESULTS: Seventy-five members of the public aged 23-72 participated in one of fifteen focus groups. Participants agreed that if prioritisation of conditions was necessary, childhood-onset conditions were more important to include than later-onset conditions. Despite the purpose of the focus groups being to elicit public preferences, participants wanted to defer to others, such as health professionals or those with a lived experience of each condition, to make decisions about which conditions to include. Many participants saw benefit in including conditions with no available treatment. Participants agreed that gNBS should be fully publicly funded. CONCLUSION: How many and which conditions are included in a gNBS program will be a complex decision requiring detailed assessment of benefits and costs alongside public and professional engagement. Our study provides support for implementing gNBS for treatable childhood-onset conditions.
Asunto(s)
Tamizaje Neonatal , Humanos , Recién Nacido , Australia , Adulto , Femenino , Masculino , Persona de Mediana Edad , Anciano , Genómica , Grupos Focales , Opinión Pública , Pruebas Genéticas , Adulto JovenRESUMEN
The development of massively parallel sequencing-based genomic sequencing tests has increased genetic test availability and access. The field and practice of genetic counseling have adapted in response to this paradigm-shifting technology and the subsequent transition to practicing genomic medicine. While the key elements defining genetic counseling remain relevant, genetic counseling service delivery models and practice settings have evolved. Genetic counselors are addressing the challenges of direct-to-consumer and consumer-driven genetic testing, and genetic counseling training programs are responding to the ongoing increased demand for genetic counseling services across a broadening range of contexts. The need to diversify both the patient and participant groups with access to genetic information, as well as the field of genetic counseling, is at the forefront of research and training program initiatives. Genetic counselors are key stakeholders in the genomics era, and their contributions are essential to effectively and equitably deliver precision medicine.
Asunto(s)
Consejeros , Asesoramiento Genético , Pruebas Genéticas , Genómica , Humanos , Medicina de PrecisiónRESUMEN
Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.
Asunto(s)
Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Discapacidades del Desarrollo/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Malignant phyllodes tumors (MPT) are rare fibroepithelial breast cancers with no known effective systemic therapy; metastatic progression portends a dismal prognosis. We sought to describe the genomic landscape of MPTs through genomic profiling and immunotherapeutic biomarker analysis. MATERIALS AND METHODS: Cases of sequenced MPT were identified from a Clinical Laboratory Improvement Amendments-certified, College of American Pathologists-accredited laboratory (Foundation Medicine). All cases underwent genomic profiling using adaptor ligation-based, next-generation sequencing assay of 324 genes. Tumor agnostic immunotherapy biomarkers, microsatellite instability, tumor mutational burden (TMB), and programmed death-ligand 1 (PD-L1) expression were evaluated. Fisher's Exact Tests and analysis of variance were used to test for differences between groups and for continuous variables as appropriate. RESULTS: Of 135 MPT cases identified; 94 (69.6%) were localized/locally recurrent and 41 (30.4%) were metastatic. Median age was 54 years (range 14-86). The median TMB was 2.5 mut/Mb and 3 were TMB-high (≥10 mut/Mb). 21.4% were PD-L1+ via Dako 22C3 assay (CPS ≥1). Most commonly altered genes included TERT-promoter (69.7%), CDKN2A (45.9%), TP53 (37.8%), NF1 (35.6%), CDKN2B (33.3%), MED12 (28.9%), MTAP (27.7%), KMT2D (22.2%), PIK3CA (20.0%), PTEN (18.5%), and RB1 (18.5%). Several tumors harboring genomic alterations with US Food and Drug Administration-approved indications in other tumor types were found including NF1, PIK3CA, EGFR Exon 19/20 insertions, and BRAF V600E mutations. CONCLUSIONS: In the largest genomic evaluation of MPT to date, multiple clinically actionable mutations were found. Routine sequencing of metastatic MPT may provide additional information to guide treatment decisions and clinical trial enrollment.
RESUMEN
BACKGROUND: The treatment landscape for HR(+)HER2(-) metastatic breast cancer (MBC) is evolving for patients with ESR1 mutations (mut) and PI3K/AKT pathway genomic alterations (GA). We sought to inform clinical utility for comprehensive genomic profiling (CGP) using tissue (TBx) and liquid biopsies (LBx) in HR(+)HER2(-) MBC. METHODS: Records from a de-identified breast cancer clinicogenomic database for patients who underwent TBx/LBx testing at Foundation Medicine during routine clinical care at ~ 280 US cancer clinics between 01/2011 and 09/2023 were assessed. GA prevalence [ESR1mut, PIK3CAmut, AKT1mut, PTENmut, and PTEN homozygous copy loss (PTENloss)] were calculated in TBx and LBx [stratified by ctDNA tumor fraction (TF)] during the first three lines of therapy. Real-world progression-free survival (rwPFS) and overall survival (rwOS) were compared between groups by Cox models adjusted for prognostic factors. RESULTS: ~ 60% of cases harbored 1 + GA in 1st-line TBx (1266/2154) or LBx TF ≥ 1% (80/126) and 26.5% (43/162) in LBx TF < 1%. ESR1mut was found in 8.1% TBx, 17.5% LBx TF ≥ 1%, and 4.9% LBx TF < 1% in 1st line, increasing to 59% in 3rd line (LBx TF ≥ 1%). PTENloss was detected at higher rates in TBx (4.3%) than LBx (1% in TF ≥ 1%). Patients receiving 1st-line aromatase inhibitor + CDK4/6 inhibitor (n = 573) with ESR1mut had less favorable rwPFS and rwOS versus ESR1 wild-type; no differences were observed for fulvestrant + CDK4/6 inhibitor (n = 348). CONCLUSION: Our study suggests obtaining TBx for CGP at time of de novo/recurrent diagnosis, followed by LBx for detecting acquired GA in 2nd + lines. Reflex TBx should be considered when ctDNA TF < 1%.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Fosfohidrolasa PTEN/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Persona de Mediana Edad , Resistencia a Antineoplásicos/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Biomarcadores de Tumor/genética , Anciano , Pronóstico , Adulto , Mutación , Metástasis de la Neoplasia , Receptores de Estrógenos/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Genómica/métodos , Receptores de Progesterona/metabolismo , PrevalenciaRESUMEN
BACKGROUND: Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored. METHODS: To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood. RESULTS: Through RNA sequencing, we identified two distinct DCIS subgroups: "immune hot" and "immune cold". The "immune hot" subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with "immune cold" samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with "immune cold" cases generally showing lower levels of methylation. CONCLUSION: In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.
Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Adulto , Mutación , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Persona de Mediana Edad , Metilación de ADN , Adulto Joven , Genómica/métodos , Pronóstico , Exoma/genética , MultiómicaRESUMEN
PURPOSE: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings. METHODS: We conducted semistructured focus groups with neonatal and genetics providers at 6 NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains. We iteratively developed codes and themes until thematic saturation was reached. RESULTS: Regarding evidence, providers felt that genetic testing benefits infants and families. Regarding context, the major barriers identified to genomic care were genetic testing cost, lack of genetics expertise for disclosure and follow-up, and navigating the complexity of selecting and ordering genetic tests. Providers had negative feelings about the current status quo and inequity in genomic care across NICUs. Regarding facilitation, providers felt that a virtual support model such as VIGOR would address major barriers and foster family-centered care and collaboration. CONCLUSION: NICU providers at safety-net hospitals believe that access to state-of-the-art genomic care is critical for optimizing infant outcomes; yet, substantial barriers exist that the VIGOR study may address.
Asunto(s)
Pruebas Genéticas , Genómica , Unidades de Cuidado Intensivo Neonatal , Proveedores de Redes de Seguridad , Humanos , Recién Nacido , Grupos Focales , Femenino , Personal de Salud , MasculinoRESUMEN
PURPOSE: Measuring the effects of genomic sequencing (GS) on patients and families is critical for translational research. We aimed to develop and validate an instrument to assess parents' perceived utility of pediatric diagnostic GS. METHODS: Informed by a 5-domain conceptual model, the study comprised 5 steps: (1) item writing, (2) cognitive testing, (3) pilot testing and item reduction, (4) psychometric testing, and (5) evaluation of construct validity. Parents of pediatric patients who had received results of clinically indicated GS participated in structured cognitive interviews and 2 rounds of surveys. After eliminating items based on theory and quantitative performance, we conducted an exploratory factor analysis and calculated Pearson correlations with related instruments. RESULTS: We derived the 21-item Pediatric Diagnostic version of the GENEtic Utility (GENE-U) scale, which has a 2-factor structure that includes an Informational Utility subscale (16 items, α = 0.91) and an Emotional Utility subscale (5 items, α = 0.71). Scores can be summed to calculate a Total scale score (α = 0.87). The Informational Utility subscale was strongly associated with empowerment and personal utility of GS, and the Emotional Utility subscale was moderately associated with psychosocial impact and depression and anxiety. CONCLUSION: The pediatric diagnostic GENE-U scale demonstrated good psychometric performance in this initial evaluation and could be a useful tool for translational genomics researchers, warranting additional validation.
Asunto(s)
Pruebas Genéticas , Padres , Psicometría , Humanos , Femenino , Masculino , Niño , Psicometría/métodos , Pruebas Genéticas/métodos , Padres/psicología , Encuestas y Cuestionarios , Adolescente , Genómica/métodos , Preescolar , AdultoRESUMEN
PURPOSE: As population-based screening programs to identify genetic conditions in adults using genomic sequencing (GS) are increasingly available, validated patient-centered outcome measures are needed to understand participants' experience. We aimed to develop and validate an instrument to assess the perceived utility of GS in the context of adult screening. METHODS: Informed by a 5-domain conceptual model, we used a 5-step approach to instrument development and validation: (1) item writing, (2) cognitive testing, (3) pilot testing and item reduction, (4) psychometric testing, and (5) evaluation of construct validity. Adults undergoing risk-based or population-based GS who had received GS results as part of ongoing research studies participated in structured cognitive interviews and 2 rounds of surveys. After item pool refinement, we conducted an exploratory factor analysis and calculated Pearson correlations with related instruments. RESULTS: We derived the 18-item Adult Screening version of the GENEtic Utility scale (total sum score α = .87). Mirroring the Pediatric Diagnostic version, the instrument has a 2-factor structure, including an Informational Utility subscale (14 items, α = .89) and an Emotional Utility subscale (4 items, α = .75). The Informational Utility subscale was strongly associated with empowerment and personal utility of GS. Correlations of the Emotional Utility subscale with psychosocial impact and anxiety and depression were weak to moderate. CONCLUSION: Initial psychometric testing of the Adult Screening GENEtic Utility scale demonstrates its promise, and additional validation in translational genomics research is warranted.
RESUMEN
INTRODUCTION: Over 30 research groups and companies are exploring newborn screening using genomic sequencing (NBSeq), but the sensitivity of this approach is not well understood. METHODS: We identified individuals with treatable inherited metabolic disorders (IMDs) and ascertained the proportion whose DNA analysis revealed explanatory deleterious variants (EDVs). We examined variables associated with EDV detection and estimated the sensitivity of "DNA-first" NBSeq. We further predicted the annual rate of true positive and false negative NBSeq results in the United States for several conditions on the Recommended Uniform Screening Panel (RUSP). RESULTS: We identified 635 individuals with 80 unique IMDs. In univariate analyses, Black race (OR = 0.37, 95% CI: 0.16-0.89, p = 0.02) and public insurance (OR = 0.60, 95% CI: 0.39-0.91, p = 0.02) were less likely to be associated with finding EDVs. Had all individuals been screened with NBSeq, the sensitivity would have been 80.3%. We estimated that between 0 and 649.9 cases of RUSP IMDs would be missed annually by NBSeq in the United States. CONCLUSIONS: The overall sensitivity of NBSeq for treatable IMDs is estimated at 80.3%. That sensitivity will likely be lower for Black infants and those who are on public insurance.
RESUMEN
PURPOSE: Professional guidelines recommend engaging adolescents and young adults (AYAs) in medical decision making (DM), including whether to undergo genomic sequencing (GS). We explored DM around GS and attitudes after return of GS results among a diverse group of AYAs with cancer and their parents. METHODS: We surveyed AYAs with cancer (n = 75) and their parents (n = 52) 6 months after receiving GS results through the Texas KidsCanSeq study. We analyzed AYAs' DM role in GS research enrollment and their satisfaction with that role. We compared AYAs' and parents' self-reported understanding of, attitudes toward, and perceived utility of the AYA's GS results. RESULTS: Most AYAs reported equally sharing DM with their parents (55%) or leading DM (36%) about GS research. Compared with their cancer care DM role, 56% of AYAs reported the same level of involvement in GS research DM, whereas 32% were more involved, and 13% were less involved (P = .011). AYAs were satisfied (99%) with their DM role regarding GS study participation. AYAs and parents had similar self-reported understanding of, attitudes toward, and perceived utility of the GS results. CONCLUSION: Our results support engaging AYAs in DM about GS research and provide insights into AYAs' DM preferences and positive attitudes toward GS.
Asunto(s)
Toma de Decisiones , Neoplasias , Padres , Humanos , Adolescente , Masculino , Femenino , Padres/psicología , Adulto Joven , Neoplasias/genética , Neoplasias/psicología , Neoplasias/terapia , Adulto , Encuestas y Cuestionarios , Genómica/métodos , Pruebas Genéticas , Conocimientos, Actitudes y Práctica en SaludRESUMEN
BACKGROUND: Undigested components of the human diet affect the composition and function of the microorganisms present in the gastrointestinal tract. Techniques like metagenomic analyses allow researchers to study functional capacity, thus revealing the potential of using metagenomic data for developing objective biomarkers of food intake. OBJECTIVES: As a continuation of our previous work using 16S and metabolomic datasets, we aimed to utilize a computationally intensive, multivariate, machine-learning approach to identify fecal KEGG (Kyoto encyclopedia of genes and genomes) Orthology (KO) categories as biomarkers that accurately classify food intake. METHODS: Data were aggregated from 5 controlled feeding studies that studied the individual impact of almonds, avocados, broccoli, walnuts, barley, and oats on the adult gastrointestinal microbiota. Deoxyribonucleic acid from preintervention and postintervention fecal samples underwent shotgun genomic sequencing. After preprocessing, sequences were aligned and functionally annotated with Double Index AlignMent Of Next-generation sequencing Data v2.0.11.149 and MEtaGenome ANalyzer v6.12.2, respectively. After the count normalization, the log of the fold change ratio for resulting KOs between pre- and postintervention of the treatment group against its corresponding control was utilized to conduct differential abundance analysis. Differentially abundant KOs were used to train machine-learning models examining potential biomarkers in both single-food and multi-food models. RESULTS: We identified differentially abundant KOs in the almond (n = 54), broccoli (n = 2474), and walnut (n = 732) groups (q < 0.20), which demonstrated classification accuracies of 80%, 87%, and 86% for the almond, broccoli, and walnut groups using a random forest model to classify food intake into each food group's respective treatment and control arms, respectively. The mixed-food random forest achieved 81% accuracy. CONCLUSIONS: Our findings reveal promise in utilizing fecal metagenomics to objectively complement self-reported measures of food intake. Future research on various foods and dietary patterns will expand these exploratory analyses for eventual use in feeding study compliance and clinical settings.
Asunto(s)
Microbioma Gastrointestinal , Juglans , Adulto , Humanos , Metagenoma , Dieta , Heces , Biomarcadores , Ingestión de Alimentos , Metagenómica/métodosRESUMEN
Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.
Asunto(s)
Trastornos del Desarrollo Sexual , Pruebas Genéticas , Humanos , Pruebas Genéticas/métodos , Mapeo Cromosómico , Genitales , Desarrollo Sexual , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genéticaRESUMEN
Human parechovirus, a member of the Picornaviridae family (PeVs), can lead to severe infections, including severe meningitis, meningoencephalitis, and sepsis-like syndrome. We report a case of human parechovirus-related encephalitis in a 52-year-old woman diagnosed with glioblastoma multiforme. She underwent surgical resection in June 2022. Unfortunately, her disease recurred, and she underwent a second resection in August 2022, followed by radiation therapy and Temozolomide therapy. She presented to the hospital with acute confusion followed by seizures, necessitating intubation for airway support. A cerebrospinal fluid (CSF) sample was obtained and processed using the Biofire FilmArray, which reported the detection of HSV-1. Despite being on Acyclovir, the patient did not show signs of improvement. Consequently, a second CSF sample was obtained and sent for next-generation sequencing (NGS), which returned a positive result for Parechovirus. In this presented case, the patient exhibited symptoms of an unknown infectious cause. The utilization of NGS and metagenomic analysis helped identify Parechovirus as the primary pathogen present, in addition to previously identified HSV. This comprehensive approach facilitated a thorough assessment of the underlying infection and guided targeted treatment. In conclusion, the application of NGS techniques and metagenomic analysis proved instrumental in identifying the root cause of the infection.
Asunto(s)
Huésped Inmunocomprometido , Parechovirus , Infecciones por Picornaviridae , Humanos , Femenino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/diagnóstico , Parechovirus/genética , Parechovirus/aislamiento & purificación , Parechovirus/clasificación , Arabia Saudita , Secuenciación de Nucleótidos de Alto Rendimiento , Glioblastoma/virología , Metagenómica , Encefalitis Viral/virología , Encefalitis Viral/diagnóstico , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , HospitalizaciónRESUMEN
Runting and stunting syndrome (RSS) is an enteric viral disease in commercial poultry that directly affects gut health; however, its influence on gut microbiota remains unknown. This study aimed to investigate the compositional changes in the bacterial community of the ileum of 7-day-old broiler chicks naturally affected or not affected by RSS, using next-generation sequencing (NGS) technology. Twenty-one samples were obtained from the ileal contents and mucosa of 11 chicks with RSS and 10 healthy chicks, raised in a dark house system located on a farm in the state of Minas Gerais, Brazil. The results revealed overall changes in the gut microbiota of the chicks with RSS, including a decrease in microbial richness and diversity. In particular, there was a decrease in Lactobacillus and an increase in Candidatus Arthromitus and Clostridium sensu stricto 1. These results indicate a relationship between viral infection and the gut microbial composition, which can cause gut dysbiosis and may influence inflammation in this organ.RESEARCH HIGHLIGHTS RSS causes dysbiosis of the gut microbiota of the ilea of chicks.A difference was found in gut microbiota between chicks with or without RSS.Candidatus Arthromitus was predominant in chicks with RSS.Clostridium sensu stricto 1 was strictly associated with chicks with RSS.
Asunto(s)
Pollos , Microbioma Gastrointestinal , Metagenómica , Enfermedades de las Aves de Corral , Animales , Pollos/microbiología , Pollos/virología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/virología , Brasil/epidemiología , Disbiosis/veterinaria , Disbiosis/microbiología , Íleon/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Trastornos del Crecimiento/veterinaria , Trastornos del Crecimiento/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genéticaRESUMEN
The beef cattle industry has experienced a shift driven by a market demand for healthier meat, cost efficiency and environmental sustainability in recent years. Consequently, there has been a growing focus on the fatty acids content and functions of meat in cattle breeding programmes. Besides, a deeper understanding of the biological mechanisms influencing the expression of different phenotypes related to fatty acid profiles is crucial. In this study, we aimed to identify Single-Nucleotide Variants (SNV) and Insertion/Deletion (InDels) DNA variants in candidate genes related to fatty acid profiles described in genomic, transcriptomic and proteomic studies conducted in beef cattle breeds. Utilizing whole-genome re-sequencing data from Brazilian locally adapted bovine breeds, namely Caracu and Pantaneiro, we identified SNVs and InDels associated with 23,947 genes. From these, we identified 318 candidate genes related to fatty acid profiles that contain variants. Subsequently, we select only genes with SNVs and InDels in their promoter, 5' UTR and coding region. Through the gene-biological process network, approximately 19 genes were highlighted. Furthermore, considering the studied trait and a literature review, we selected the main transcription factors (TF). Functional analysis via gene-TF network allowed us to identify the 30 most likely candidate genes for meat fatty acid profile in cattle. LIPE, MFSD2A and SREBF1 genes were highlighted in networks due to their biological importance. Further dissection of these genes revealed 15 new variants found in promoter regions of Caracu and Pantaneiro sequences. The gene networks facilitated a better functional understanding of genes and TF, enabling the identification of variants potentially related to the expression of candidate genes for meat fatty acid profiles in cattle.
Asunto(s)
Ácidos Grasos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Factores de Transcripción , Bovinos/genética , Animales , Ácidos Grasos/metabolismo , Factores de Transcripción/genética , Polimorfismo de Nucleótido Simple/genética , Brasil , Carne/análisis , CruzamientoRESUMEN
Macrolides are a mainstay of therapy for infections due to nontuberculous mycobacteria (NTM). Among rapidly growing mycobacteria (RGM), inducible macrolide resistance is associated with four chromosomal 23S rRNA methylase (erm) genes. Beginning in 2018, we detected high-level inducible clarithromycin resistance (MICs of ≥16µg/mL) in clinical isolates of Mycobacterium chelonae, an RGM species not previously known to contain erm genes. Using whole-genome sequencing, we identified a novel plasmid-mediated erm gene. This gene, designated erm(55)P, exhibits <65% amino acid identity to previously described RGM erm genes. Two additional chromosomal erm(55) alleles, with sequence identities of 81% to 86% to erm(55)P, were also identified and designated erm(55)C and erm(55)T. The erm(55)T is part of a transposon. The erm(55)P allele variant is located on a putative 137-kb conjugative plasmid, pMchErm55. Evaluation of 133 consecutive isolates from 2020 to 2022 revealed 5 (3.8%) with erm(55). The erm(55)P gene was also identified in public data sets of two emerging pathogenic pigmented RGM species: Mycobacterium iranicum and Mycobacterium obuense, dating back to 2008. In both species, the gene appeared to be present on plasmids homologous to pMchErm55. Plasmid-mediated macrolide resistance, not described previously for any NTM species, appears to have spread to multiple RGM species. This has important implications for antimicrobial susceptibility guidelines and treatment of RGM infections. Further spread could present serious consequences for treatment of other macrolide-susceptible RGM. Additional studies are needed to determine the transmissibility of pMchErm55 and the distribution of erm(55) among other RGM species.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium chelonae , Mycobacterium , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrólidos/farmacología , Mycobacterium chelonae/genética , Farmacorresistencia Bacteriana/genética , Claritromicina/uso terapéutico , Micobacterias no Tuberculosas , Mycobacterium/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiologíaRESUMEN
Phosphaturic mesenchymal tumors (PMT) are uncommon neoplasms that cause hypophosphatemia/osteomalacia mainly by secreting fibroblast growth factor 23. We previously identified FN1::FGFR1/FGF1 fusions in nearly half of the PMTs and frequent KL (Klotho or α-Klotho) overexpression in only those with no known fusion. Here, we studied a larger cohort of PMTs for KL expression and alterations. By FN1 break-apart fluorescence in situ hybridization (FISH) and reappraisal of previous RNA sequencing data, 6 tumors previously considered "fusion-negative" (defined by negative results of FISH for FN1::FGFR1 fusion and FGF1 break-apart and/or of RNA sequencing) were reclassified as fusion-positive PMTs, including 1 containing a novel FN1::ZACN fusion. The final cohort of fusion-negative PMTs included 33 tumors from 32 patients, which occurred in the bone (n = 18), soft tissue (n = 10), sinonasal tract (n = 4), and brain (n = 1). In combination with previous work, RNA sequencing, RNA in situ hybridization, and immunohistochemistry showed largely concordant results and demonstrated KL/α-Klotho overexpression in 17 of the 28 fusion-negative and none of the 10 fusion-positive PMTs studied. Prompted by a patient in this cohort harboring germline KL upstream translocation with systemic α-Klotho overexpression and multifocal PMTs, FISH was performed and revealed KL rearrangement in 16 of the 33 fusion-negative PMTs (one also with amplification), including 14 of the 17 cases with KL/α-Klotho overexpression and none of the 11 KL/α-Klotho-low fusion-negative and 11 fusion-positive cases studied. Whole genomic sequencing confirmed translocation and inversion in 2 FISH-positive cases involving the KL upstream region, warranting further investigation into the mechanism whereby these rearrangements may lead to KL upregulation. Methylated DNA immunoprecipitation and sequencing suggested no major role of promoter methylation in KL regulation in PMT. Interestingly, KL-high/-rearranged cases seemed to form a clinicopathologically homogeneous group, showing a predilection for skeletal/sinonasal locations and typically matrix-poor, cellular solitary fibrous tumor-like morphology. Importantly, FGFR1 signaling pathways were upregulated in fusion-negative PMTs regardless of the KL status compared with non-PMT mesenchymal tumors by gene set enrichment analysis, perhaps justifying FGFR1 inhibition in treating this subset of PMTs.
Asunto(s)
Mesenquimoma , Senos Paranasales , Neoplasias de los Tejidos Blandos , Humanos , Hibridación Fluorescente in Situ , Factor 1 de Crecimiento de Fibroblastos/genética , Neoplasias de los Tejidos Blandos/genética , Mesenquimoma/genética , Mesenquimoma/patología , Translocación Genética , Senos Paranasales/patologíaRESUMEN
PURPOSE: Next-generation sequencing (NGS) has revolutionized the diagnostic process for rare/ultrarare conditions. However, diagnosis rates differ between analytical pipelines. In the National Institutes of Health-Undiagnosed Diseases Network (UDN) study, each individual's NGS data are concurrently analyzed by the UDN sequencing core laboratory and the clinical sites. We examined the outcomes of this practice. METHODS: A retrospective review was performed at 2 UDN clinical sites to compare the variants and diagnoses/candidate genes identified with the dual analyses of the NGS data. RESULTS: In total, 95 individuals had 100 diagnoses/candidate genes. There was 59% concordance between the UDN sequencing core laboratories and the clinical sites in identifying diagnoses/candidate genes. The core laboratory provided more diagnoses, whereas the clinical sites prioritized more research variants/candidate genes (P < .001). The clinical sites solely identified 15% of the diagnoses/candidate genes. The differences between the 2 pipelines were more often because of variant prioritization disparities than variant detection. CONCLUSION: The unique dual analysis of NGS data in the UDN synergistically enhances outcomes. The core laboratory provided a clinical analysis with more diagnoses and the clinical sites prioritized more research variants/candidate genes. Implementing such concurrent dual analyses in other genomic research studies and clinical settings can improve both variant detection and prioritization.