RESUMEN
Roadside soil contamination is mostly caused by human-caused pollutant deposition. PTEs are among the many substances that are harmful for both humans and the environment. PTE concentrations in roadside soil in Chennai, southern India, have been determined in this study. To evaluate the seriousness of the threats, more environmental and geochemical indices have been applied. 83 soil samples have been obtained from the study regions and focusing on important roads. Elemental analysis has been analyzed with ED-XRF and sieve-filtered samples focused on PTEs such as arsenic, barium, cobalt, chromium, copper, iron, potassium, nickel, lead, thorium, titanium, zinc, and uranium. Significant metallic variations have been found in soil samples around roads by the investigation. The elements this study examined section ascending in the following sequence: Fe > Ti > Zn > Cr > Pb > Cu > Ni > Th > As > U > K. In the research area, the CD classification denotes high contamination, whereas the CF indices show mild to significant pollution. PLI indicates moderate to high pollution, whereas EF suggests excessive enrichment. Igeo demonstrates a range from uncontaminated to highly contaminated. PERI showed high levels in the northern study region, whereas GUFI shows several hot spots indicating moderate to severe pollution. The Hazard Index (HI) values for all metals were less than one, demonstrating the absence of non-carcinogenic risks for both adults and children. Multivariate data show natural and anthropogenic PTEs in roadside soil. In addition, a soil quality monitoring system is needed to mitigate continual contamination risks.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Metales Pesados/análisis , Suelo/química , Monitoreo del Ambiente , India , Medición de Riesgo , Contaminantes del Suelo/análisis , China , Cadmio/análisisRESUMEN
The dam failure of the Córrego do Feijão Mine (CFM) located in Minas Gerais State, Brazil, killed at least 278 people. In addition, large extensions of aquatic and terrestrial ecosystems were destroyed, directly compromising the environmental and socioeconomic quality of the region. This study assessed the pollution and human health risks of soils impacted by the tailing spill of the CFM dam, along a sample perimeter of approximately 200 km. Based on potential ecological risk and pollution load indices, the enrichments of Cd, As, Hg, Cu, Pb and Ni in soils indicated that the Brumadinho, Mário Campos, Betim and São Joaquim de Bicas municipalities were the most affected areas by the broken dam. Restorative and reparative actions must be urgently carried out in these areas. For all contaminated areas, the children's group indicated an exacerbated propensity to the development of carcinogenic and non-carcinogenic diseases, mainly through the ingestion pathway. Toxicological risk assessments, including acute, chronic and genotoxic effects, on people living and working in mining areas should be a priority for public management and mining companies to ensure effective environmental measures that do not harm human health and well-being over time.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Humanos , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Ecosistema , Brasil , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de RiesgoRESUMEN
To estimate a watershed's response to climate change, it is crucial to understand how human activities and climatic extremes have interacted over time. Over the last century, the Zarivar Lake watershed, Iran, has been subjected to various anthropogenic activates, including deforestation and inappropriate land-management practices alongside the implementation of conservation measures like check dams. To understand the effects of these changes on the magnitude of sediment, organic carbon (OC), and phosphorus supplies in a small sub-watershed connected to the lake over the last century, a lake sediment core was dated using 210Pbex and 137Cs as geochronometers. The average mass accumulation rate (MAR), organic carbon accumulation rates (OCAR), and particulate phosphorus accumulation rates (PPAR) of the sediment core were determined to be 6498 ± 2475, 205 ± 85, and 8.9 ± 3.3 g m-2 year-1, respectively. Between the late 1970s and early 1980s, accumulation rates were significantly higher than their averages at 7940 ± 3120, 220 ± 60, and 12.0 ± 2.8 g m-2 year-1 respectively. During this period, the watershed underwent extensive deforestation (12%) on steep slopes, coinciding with higher mean annual precipitations (more than double). Conversely, after 2009, when check dams were installed in the sub-watershed, the sediment load to the lake became negligible. The results of this research indicate that anthropogenic activities had a pronounced effect on MAR, OCAR, and PPAR, causing them to fluctuate from negligible amounts to values twice the averages over the last century, amplified by climatic factors. These results imply that implementing climate-smart watershed management strategies, such as constructing additional check dams and terraces, reinforcing restrictions on deforestation, and minimum tillage practices, can facilitate protection of lacustrine ecosystems under accelerating climate change conditions.
Asunto(s)
Carbono , Radioisótopos de Cesio , Cambio Climático , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Radioisótopos de Plomo , Fósforo , Irán , Lagos/química , Sedimentos Geológicos/química , Radioisótopos de Cesio/análisis , Fósforo/análisis , Radioisótopos de Plomo/análisis , Carbono/análisis , Contaminantes Químicos del Agua/análisis , Efectos AntropogénicosRESUMEN
The present study was conducted to investigate the heavy metal pollution status of the agricultural soils in Ramhormoz Plain, Khuzestan province, Iran. A total of 54 samples from the depths (0-20 cm) of the soil were collected from the selected areas in (March) 2021. According to the obtained results, the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Al in soil samples were 1.3, 0.68, 60, 10.6, 0.01, 218, 23, 3.65, 14 and 0.58 mg/kg, respectively, in which As showed significant soil contamination and Cu, Hg, Mn, Ni, Pb, Zn and Al moderate contamination according to the calculation of contamination factor (CF). PCA analysis revealed that both anthropogenic and natural sources of pollution like agricultural and transport activities contributed to the enrichment of study area. Investigation of ecological risk indicated that Ramhormoz Plain was categorized as a high risk area.
RESUMEN
This study evaluated metal contamination in surface sediments and macroalgae of mangroves and port complexes on the Brazilian equatorial margin. Samples were collected between August 2020 and February 2021 at seven points in a mangrove swamp under the influence of port activity and at two points without port activity. Metal concentrations in the macroalgae and sediments were determined using inductively coupled plasmaâoptical emission spectrometry. All macroalgal species bioaccumulated metals, as demonstrated by their bioaccumulation factors. The geochemical contamination indices indicated that the estuarine complex was influenced by port activity as moderately contaminated by Pb, Cr, Mn, and Fe and considerably contaminated by Zn and Cu. The enrichment factor confirmed significant mineral enrichment of Zn and Cu in this environment. The concentrations of the metals in the sediment followed the order Fe > Mn > Cr > Zn > Cu > Pb at most sampling points. Cladophoropsis membranacea recorded the highest bioaccumulation values for Pb (0.44), Rhizoclonium africanum for Zn (1.08), Cr (0.55), and Fe (0.30), and Bostrychia radicans for Mn (2.22). The bioaccumulation pattern of metals in the most abundant macroalgal species followed the order Bostrychia radicans (Mn > Zn > Cu > Cr > Pb > Fe) and Rhizoclonium africanum (Zn > Mn > Cr > Cu > Pb > Fe).
Asunto(s)
Algas Marinas , Ecosistema , Brasil , Plomo , Monitoreo del AmbienteRESUMEN
Research in urban geochemistry has been expanding globally in recent years, following the trend of the ever-increasing human population living in cities. Environmental problems caused by non-degradable pollutants such as metals and metalloids are of particular interest considering the potential to affect the health of current and future urban residents. In comparison with the extensive global research on urban geochemistry, Iranian cities have not received sufficient study. However, rapid and often uncontrolled urban expansion in Iran over recent years has contributed to an increasing number of studies concerning contamination of urban soil and dust. The present work is based on a comprehensive nationwide evaluation and intercomparison of published quantitative datasets to determine the contamination levels of Iranian cities with respect to potentially toxic elements (PTEs) and assess health risks for urban population. Calculation of geoaccumulation, pollution, and integrated pollution indices facilitated the identification of the elements of most concern in the cities, while both carcinogenic and non-carcinogenic risks have been assessed using a widely accepted health-risk model. The analysis of secondary, literature data revealed a trend of contamination, particularly in old and industrial cities with some alarming levels of health risks. Among the elements of concern, As, Cd, Cu, and Pb were found to be most enriched in soils and dusts of the studied cities based on the calculated geochemical indices. The necessity of designing strategic plans to mitigate possible adverse effects of elevated PTE concentrations in urban environments is emphasized considering the role of long-term exposure in the occurrence of chronic carcinogenic and non-carcinogenic health problems.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ciudades , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Irán , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidadRESUMEN
Biomonitoring of heavy metal pollution through the use of biomarkers could be a difficult task since the organisms' physiological changes could shift regarding natural factors (i.e., the season of the year) and due to the anthropogenic pressures of the environment. In the Southwest Atlantic Ocean, where most industrial and developing countries are settled, it is essential to address these concerns to generate information for the stakeholders and monitoring programs that aim to use biochemical biomarkers as early warning signals to detect heavy metal pollution. The present study intended to determinate the heavy metal concentrations in sediments and the hepatopancreas of the crab species Neohelice granulata as well as the ecological risk through the use of biomarkers and geochemical indices in sites with different anthropogenic pressures of the Bahía Blanca estuary (SW Atlantic Ocean) during the warm and cold season. The results showed low to moderate heavy metal pollution in the sediments by Cu with possible effects on the biota in a site with sewage waters' discharges. Except for GST that was explained by Cd, the biomarkers employed were not useful to assess spatial heavy metal pollution, and they might be ruled out by physiological seasonal variations rather than anthropogenic constraints, or another type of pollutants in the area.
Asunto(s)
Seguimiento de Parámetros Ecológicos , Estuarios , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Océano Atlántico , Braquiuros/metabolismo , Seguimiento de Parámetros Ecológicos/métodos , Biomarcadores Ambientales , Sedimentos Geológicos/química , Humanos , Metales Pesados/metabolismo , Medición de Riesgo , Estaciones del Año , Aguas del Alcantarillado/química , América del Sur , Contaminantes Químicos del Agua/metabolismoRESUMEN
The present study addresses the metal concentration pattern and associated human health risks in ash samples of Popocatepetl volcano. In this regard, 12 ash samples from different regions of Puebla City were collected and analyzed for 28 major and trace metals, out of which exclusively 8 metals of potential risk (Cd, Co, Cr, Cu, Mn, Ni, Pb & Zn) were selected for human health risk validation. The metal concentration pattern showed an enriching trend for ferromagnesium and carbonate elements compared to previous ash eruptions. Enrichment factor and geoaccumulation indices displayed a least significant enhancement of metals from baseline concentrations. More likely, the potential ecological risk index suggested no harmful biological effects due to the presence of these metals in ash. Concurrently, in the human health risk assessment model, the hazard quotient and hazard index values <â¯1 indicated safe levels and no carcinogenic effects. All-inclusive, this study highlights the context of metals in ash fall of Popocatepetl which presents no adverse effects over the human population.
Asunto(s)
Contaminantes Ambientales/análisis , Metales Pesados/análisis , Erupciones Volcánicas/análisis , Adulto , Niño , Ciudades , Monitoreo del Ambiente , Humanos , México , Medición de Riesgo , OligoelementosRESUMEN
The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.
Asunto(s)
Eucalyptus/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Árboles/química , Monitoreo del Ambiente , Eucalyptus/metabolismo , India , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Árboles/metabolismoRESUMEN
Thorough deliberation is necessary to safeguard the tropical urban streams near the shoreline from human interference, as it is becoming a notable environmental danger. Consequently, an in-depth study was carried out on a significant urban waterway located on the southern seashore of Bangladesh, which is positioned in the Bengal delta, renowned as the largest delta in the globe. The current investigation assesses the potential health hazards associated with trace metals (Hg, Cu, As, Pb, Ni, Zn, Cd, Cr, Fe, and Mn) and uses chemometric analysis to determine where they originate. Likewise geochemical methods are used to analyze the levels of trace metal enrichment and pollution in the sediments of the river. Almost all of the elements' mean concentrations were observed to be within the standard limits. The findings not only demonstrate the extent of trace metal contamination but also the health threats that it poses to the public (male, female, and children) by polluting the sediment. For all age groups of people, the hazard index was <1, suggesting there was no non-carcinogenic threat. Regardless of age and sex, exposure occurred in descending order: ingestion > dermal > inhalation. Total carcinogenic risk (TCR) values for males, females, and children were 1.45E-05, 1.56E-05, and 1.34E-04, respectively, recommending that children are at greater vulnerability than adults. The geochemical approach and chemometric analysis corroborate the human-induced impact of trace metal loading in the sediment of the waterway, which is predominantly caused by the oil industry, domestic garbage, and untreated waste discharge.
Asunto(s)
Monitoreo del Ambiente , Metales , Contaminantes Químicos del Agua , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Bangladesh , Metales/análisis , Femenino , Masculino , Sedimentos Geológicos/química , Niño , Metales Pesados/análisisRESUMEN
Metal concentrations (Cu, Zn, Cr, Fe, As, Pb, Ni, V, and Co) in surface sediments were determined in the southern Caspian Sea. Sediment pollution was investigated using geochemical index such as Enrichment Factor (EF) and ecological risk indices like modified Hazard Quotient (mHQ) and Toxic Risk Index (TRI). The highest calculated geochemical index was observed in sediments near the cities of Chalus and Ramsar, which are highly polluted due to human activities. The ecological potential indices indicated that Ni contents in all the studied stations would impose harmful effects on aquatic organisms, while other metals had a low risk. Principal component and cluster analyses suggested that As and Pb emanated from anthropogenic sources, and other metals probably originated from lithogenic sources.
Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Sedimentos Geológicos/química , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Océanos y MaresRESUMEN
Coal mining activities in the North Karanpura basin have significantly increased the trace element (TE) concentrations in the soil, resulting in soil pollution and potential health risks. To assess this, 113 soil samples, along with coal, shale, and overburden rocks, were collected from open-cast mining areas during pre-monsoon (Pre-M) and post-monsoon (Post-M) seasons. Seasonal analysis revealed higher TE concentrations in the Post-M period, especially in the SE direction, followed by NE and NW, likely due to surface runoff and deposition, demonstrating temporal variability in TE distribution which corroborated from the spatial distribution maps. Positive matrix factorization (PMF) model identified four factors: mixed sources (F1Pre-M: 37.6 %; F4Post-M: 28.9 %), coal-fired emissions (F2Pre-M: 20.5 %; F3Post-M: 26.0 %), overburden rocks (F3Pre-M: 25.5 %; F2Post-M: 16.7 %), and agricultural and lithogenic origin (F4Pre-M: 16.4 %) during the Pre-M period, attributed to coal mining. Post-M sources were similar, but agricultural and lithogenic origins were replaced by atmospheric deposition (F1Post-M: 28.4 %), enhanced by monsoon effects. Carcinogenic risk assessment revealed that As, Cr, and Ni exceeded acceptable levels for children via ingestion, though adults remained within safe limits. Inhalation and dermal contact were also considered, but ingestion posed the highest risk. The hazard index (HI) via ingestion showed that children had an HI of 1.6 in Pre-M, increasing to 2.66 in Post-M, highlighting their potential vulnerability to non-carcinogenic risks, while adults stayed within safe limits. The expansion of mining areas in the study region led to decrease in vegetative areas which could affect agriculture and local communities, raising a comprehensive environmental and public health issues. These results underline the need for implementing effective biannual soil monitoring and mitigation strategies, such as phytoremediation, bioremediation, rock dust remediation, chemical amendments and improved waste management, to reduce TE contamination.
RESUMEN
The incorrect disposal of waste negatively influences the population's quality of life and harms the environment. In Brazil, waste disposal in the open air is still a reality, which generates concerns about the contamination of the areas surrounding these dumpsites. The present work evaluated the possible environmental risks of a deactivated dumpsite in southern Brazil. The soil was characterized by physical and chemical tests, emphasizing the analysis of heavy metals Al, Fe, Cu, Mn, and Zn. Using geostatistical tools, it was possible to determine the distribution of these heavy metals in the influence of the landfill, since the metals Mn, Fe, and Zn showed a significant difference about the reference soil, indicating that they came from leaching from the landfill. The dispersion of the metals along the slope showed a tendency towards mobility since the highest concentrations were at elevations below the landfill. The area was considered contaminated due to the high scores of the evaluated indexes pollution, as the Improved Nemerow Pollution Index, which considers pollutant concentration, toxicity, and environmental impact to provide a measure of contamination, and was equivalent to 6.44, indicating that the area is contaminated. However, it presented low ecological risks, with a potential ecological risk of 18.55. As well as low risks to human health, with hazard index below the limit considered critical to health (HI < 1). Thus, the results of this study showed that the metals are released around the deactivated deposit, which compromises the environmental safety of the site, mainly due to its proximity to bodies of water that supply the region. Thus, the permanent control and monitoring of the areas of deactivated dumpsites are essential to avoid further pollution and should be included in the management plans for deactivating these deposits throughout the country.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Suelo/química , Brasil , Calidad de Vida , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Medición de Riesgo , Instalaciones de Eliminación de Residuos , ChinaRESUMEN
The current study aimed to gauge total mercury (THg) concentration and the environmental geochemical indices in tarmat contaminated sediments and test their presence in targeted coastal species. Layers of hard asphalt-like tarmats and sediment samples were collected from 34 sites along the coast of Qatar. The mean concentration of THg in tarmat-sediment mixture is 89 ± 20 ng·g-1. THg concentration varies significantly between the northern and eastern coasts. Geographically, sampling area were divided into four zones according to the relative closeness with low to serious potential ecological risk index (Er), moderate pollution load index (PLI), moderate Geoaccumulation index (Igeo), and no toxic risk (TRI) trending as Northern (Zones 4, 3) > North-Eastern (Zone 1) > Western (Zone 2) coasts. Three biota classes (Gastropoda, Bivalvia, and Crustacea) were sampled on the tarmat which the hermit crab (Clibanarius signatus) from Ras Rakan island obtained the highest THg (977 ng·g-1) and BSAF (29.70).
Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Mercurio/análisis , Qatar , Contaminantes Químicos del Agua/análisisRESUMEN
Quantification of four toxic metals (As, Cr, Cd, and Pb) in water and sediments at the Sitakunda ship breaking area in Bangladesh was studied. Along with this, sediment quality and ecological risk were evaluated for the metal intrusion to the study area. A total sample number of 120 (water; n = 60 and sediment; n = 60) were analyzed for both winter and summer seasons using atomic absorption spectrophotometer (AAS). The trace metal concentration in both water and sediment showed decreasing trend as follows; Cr (mean-W: 0.118 mg/L; mean-S:121.87 mg/kg) > Pb (mean-W: 0.064 mg/L; mean-S: 65.31 mg/kg) > As (mean-W: 0.03 mg/L; mean-S: 32.53 mg/kg) > Cd (mean-W: 0.004 mg/L; mean-S: 4.81 mg/kg). However, in both segments, the concentrations of the toxic metals exceeded the recommended acceptable limits. As and Cd showed significant variation (water and sediment) between the seasons, while Pb and Cr had no seasonal impact. Metal pollution index (MPI) and contamination factor (CF) was evaluated and revealed that the study area exhibited the critical score of water quality (MPI > 100). The cumulative effect of the metal concentrations was high (CI > 3). The assessed mean geoaccumulaiton index (Igeo) revealed that the study area was moderate to strongly polluted except for Cr. According to the contamination factor (CF), the sediment samples were moderate to highly contaminated by Cd, Pb, and As. Moreover, the explored range of pollution load index (PLI) in all sampling sites in the ship breaking region was from 1.75 to 3.10, suggesting that the sediment in the study area was highly polluted by heavy metals (PLI > 1). The risk index and the potential ecological risk index (PERI) suggested that the study area was at high risk due to metals pollution. Therefore, it is obligatory to maintain some crucial efforts for the betterment of the surrounding environment near the investigated sites.
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bangladesh , Bahías , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Navíos , Contaminantes Químicos del Agua/análisis , Calidad del AguaRESUMEN
Baseline data on concentration, fractionation, pollution level and ecological risk index for seventeen beach sediments from Santa Rosalia mining region of Baja California Sur, Mexico were assessed. Higher concentrations of Rare Earth Elements (REEs) (mean. 341.49 µg/g) indicated that it is higher than most of the mining regions around the world. Normalization pattern showed enrichment of Eu (>4) and calculated geochemical indices revealed that light and middle REEs are moderately polluted with most of the sampling points located closer to the river discharge. Potential Ecological Risk Index (PERI) showed that Eu (20.2), Tb (20.88), and Lu (28.57) pose moderate ecological risk to the soil at selected stations (10, 11, 15 and 16) with a risk index value ranging from 245 to 359. Pearson's correlation matrix suggested that all REEs are highly correlated (r2 0.95) with each other having similar geochemical characteristics and indicating identical source due to continuous mining activity.
Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Metales de Tierras Raras/análisis , México , Minería , Contaminantes Químicos del Agua/análisisRESUMEN
The vertical distribution pattern and concentrations of elements (Fe, Al, Ca, Mg, Mn, Cr, Cu, Ni, Co, Pb, Zn, and As) in the estuarine and lagoon region of Marquelia coast, Guerrero, Mexico, were studied to comprehend the origin and pollutant phases of geochemical elements. Henceforth, two sediment core samples [C1 (127 cm) and C2 (110 cm)] were collected to assess the pollution status using geochemical indices, namely anthropogenic factor (AF), enrichment factor (EF), and geoaccumulation index (Igeo). Additionally, the elemental concentrations were compared with the sediment quality guidelines (SQGs) to examine the potential risks to biota. Among the two depositional environments, the sediments of lagoon Apozahualco exhibited higher concentrations of elements. The granulometry characteristics of sediment grains also attested that the concentration and mobilization of metals are largely governed by the fine-grained fractions. Major elemental concentration and grain size changes were identified at several depths (30-40, 60-70, and 90-100 cm) revealing the internal hydrodynamic condition. The overall assessment of geochemical indices revealed that the sediments were unpolluted to moderately polluted. The anthropogenic factor indicated that the upper portion of the sediments were affected by anthropogenic influences. The comparison of trace element concentration with SQGs denoted that Cr, Ni, and As could pose potential adverse effect to the organisms that live in and near the sedimentary environment. Factor analysis revealed the origin and behaviour of the studied elements during transportation and deposition processes in both the ecosystems (i.e. estuary and lagoon). The results of this study provided an in-depth understanding of variations in elemental concentration and pollution status of sediment profile in coastal transitional environments that would aid in sustainable management.
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Metales Pesados/análisis , México , Contaminantes Químicos del Agua/análisisRESUMEN
Mercury has been measured by using Cold Vapor-Atomic Absorption Spectrophotometry in coastal sediments of the Persian Gulf (Bandar Abbas region). The mean concentration of the six stations followed a decreasing order of S6 (3.95) > S1 (3.75) > S4 (3.55) > S5 (3.33) > S2 (2.72) > S3 (2.17), and the mean concentration ± standard error was calculated to be 3.24 ± 0.28 (µgg-1 dry weight) for the heavy element Mercury in the sediments. The statistical investigation indicated that the concentration means of the Mercury existing in transects sediments are meaningfully different from each other (p < 0.05). To properly assess the availability and mobility of elements, Enrichment Factor (EF), Geoaccumulation index (Igeo), Contamination factor (Cf) and Toxicity Risk Index (TRI) were provided. The results show that the pollution caused by Mercury in sediments is highly polluted and the source of the presence of Mercury in the region is human-made.
Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Océano Índico , Irán , Mercurio/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
Concentrations of lead (Pb), zinc (Zn), copper (Cu), mercury (Hg), and arsenic (As) in soils at the Kpone landfill site (Ghana) were determined using Atomic Absorption Spectrophotometry (AAS). Further analyses allowed establishing the degree of heavy metals (HMs) pollution, suitability of the soils for agriculture, sources of the HMs and their ecological and health risks. The site was divided into five zones, A, B, C, D, and E, and in all, seventeen (17) soil samples were collected. Average concentrations of Cu fell within the allowable range for agricultural soils in all the zones while average concentrations of Pb, Zn, Hg, and As exceeded the range in some or all the zones. Concentrations of the HMs generally exceeded their respective background value, with all zones showing very high degree of HMs contamination. The pollution load index (PLI) was 16.48, signifying extreme HMs pollution of the entire site. Multivariate statistical analyses revealed that Cu, Zn, and Pb in the soils originated from the deposited waste materials as well as traffic-related activities (e.g. wear and tear of tyres, brakes, and engines) at the site. Hg also originated from the deposited waste materials as well as cement production and oil and coal combustion activities in the study area, while As derived from industrial discharges and metal smelting activities. All the zones exhibited very high ecological risk. The carcinogenic and non-carcinogenic health risks posed by the HMs were also above acceptable levels, with children being more vulnerable than adults to these health risks.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , China , Monitoreo del Ambiente , Ghana , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Instalaciones de Eliminación de ResiduosRESUMEN
Surficial sediment quality in the Ojo de Liebre Lagoon (OLL), Mexico, was evaluated via five geochemical indices. Results indicate that concentrations of the elements Ag, As, Cu, Fe, Mn, Mo, Ni, Sb, U, V and Zn do not exert adverse biological effects in this ecosystem. However, minor enrichment was observed for Ba (mean ± SD: 1.09 ± 0.17) and Co (1.57 ± 0.22) and was moderately severe for Cd (9.3 ± 2.0), possibly due to natural processes. The adverse effect index was >1 only for Hg, suggesting that concentrations of this element are sufficiently high (0.40 to 1.13 nmol g-1) to potentially elicit adverse effects on local organisms in contact with sediments. This result is particularly important for grey whales (Eschrichtius robustus), given that they ingest large quantities of benthic organisms during their seasonal stay in the OLL.