Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295787

RESUMEN

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Asunto(s)
Gastritis , Neoplasias Gástricas , Infecciones Estreptocócicas , Streptococcus anginosus , Animales , Humanos , Ratones , Atrofia/patología , Carcinogénesis , Transformación Celular Neoplásica , Mucosa Gástrica , Gastritis/patología , Inflamación/patología , Proteínas Quinasas Activadas por Mitógenos , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Streptococcus anginosus/fisiología , Infecciones Estreptocócicas/patología
2.
Cell ; 180(2): 221-232, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978342

RESUMEN

Human diseases are increasingly linked with an altered or "dysbiotic" gut microbiota, but whether such changes are causal, consequential, or bystanders to disease is, for the most part, unresolved. Human microbiota-associated (HMA) rodents have become a cornerstone of microbiome science for addressing causal relationships between altered microbiomes and host pathology. In a systematic review, we found that 95% of published studies (36/38) on HMA rodents reported a transfer of pathological phenotypes to recipient animals, and many extrapolated the findings to make causal inferences to human diseases. We posit that this exceedingly high rate of inter-species transferable pathologies is implausible and overstates the role of the gut microbiome in human disease. We advocate for a more rigorous and critical approach for inferring causality to avoid false concepts and prevent unrealistic expectations that may undermine the credibility of microbiome science and delay its translation.


Asunto(s)
Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Roedores/microbiología , Animales , Enfermedad/etiología , Trasplante de Microbiota Fecal/métodos , Humanos , Ratones , Microbiota/fisiología , Modelos Animales , Ratas
3.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607511

RESUMEN

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Asunto(s)
Inmunidad Adaptativa/genética , Diarrea/microbiología , Mucosa Intestinal/microbiología , Infecciones por Rotavirus/microbiología , Animales , Antiinfecciosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Diarrea/prevención & control , Diarrea/virología , Heces/microbiología , Regulación de la Expresión Génica/genética , Humanos , Íleon/microbiología , Íleon/patología , Íleon/virología , Interferones/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Microbiota/genética , Rotavirus/patogenicidad , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Interleucina-22
4.
Cell ; 172(3): 500-516.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275859

RESUMEN

Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease.


Asunto(s)
Vida Libre de Gérmenes , Microbiota , Microglía/citología , Efectos Tardíos de la Exposición Prenatal/microbiología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Embarazo , Factores Sexuales
5.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36736321

RESUMEN

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Disbiosis , Intestinos/patología , Enfermedad Injerto contra Huésped/patología
6.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053971

RESUMEN

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Asunto(s)
Autoantígenos/inmunología , Bacteroides/inmunología , Colitis/inmunología , Microbioma Gastrointestinal , Glucosa-6-Fosfatasa/inmunología , Adulto , Animales , Bacteroides/clasificación , Bacteroides/enzimología , Colitis/microbiología , Femenino , Glucosa-6-Fosfatasa/genética , Humanos , Tejido Linfoide/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Persona de Mediana Edad , Imitación Molecular , Linfocitos T/inmunología
7.
Immunity ; 55(7): 1250-1267.e12, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35709757

RESUMEN

The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.


Asunto(s)
Enfermedades Transmisibles , Microbiota , Animales , Eosinófilos , Homeostasis , Mucosa Intestinal , Intestino Delgado , Ratones
8.
Immunity ; 51(1): 155-168.e5, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248780

RESUMEN

Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.


Asunto(s)
Catepsina E/metabolismo , Elementos de Facilitación Genéticos/genética , Inmunidad/genética , Receptores CXCR4/metabolismo , Células TH1/inmunología , Animales , Catepsina E/genética , Comercio , Regulación de la Expresión Génica , Antecedentes Genéticos , Variación Genética , Centro Germinal/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Endogamia , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Modelos Animales , Receptores CXCR4/genética
9.
Immunol Rev ; 325(1): 64-76, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716867

RESUMEN

Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.


Asunto(s)
Autoinmunidad , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico , Animales , Lupus Eritematoso Sistémico/inmunología , Ratones , Femenino , Humanos , Masculino , Vida Libre de Gérmenes , Índice de Severidad de la Enfermedad , Organismos Libres de Patógenos Específicos , Caracteres Sexuales , Factores Sexuales , Microbiota/inmunología
10.
Immunity ; 49(3): 545-559.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30193848

RESUMEN

Although the mammalian microbiota is well contained within the intestine, it profoundly shapes development and metabolism of almost every host organ. We questioned the range and depth of microbial metabolite penetration into the host, and how this is modulated by intestinal immunity. Chemically identical microbial and host metabolites were distinguished by stable isotope tracing from 13C-labeled live non-replicating Escherichia coli, differentiating 12C host isotopes with high-resolution mass spectrometry. Hundreds of endogenous microbial compounds penetrated 23 host tissues and fluids after intestinal exposure: subsequent 12C host metabolome signatures included lipidemia, reduced glycolysis, and inflammation. Penetrant bacterial metabolites from the small intestine were rapidly cleared into the urine, whereas induced antibodies curtailed microbial metabolite exposure by accelerating intestinal bacterial transit into the colon where metabolite transport mechanisms are limiting. Pervasive penetration of microbial molecules can cause extensive host tissue responses: these are limited by immune and non-immune intestinal mucosal adaptations to the microbiota.


Asunto(s)
Anticuerpos/metabolismo , Microbioma Gastrointestinal/fisiología , Glucólisis/inmunología , Hiperlipidemias/inmunología , Inflamación/inmunología , Mamíferos/inmunología , Animales , Anticuerpos/inmunología , Radioisótopos de Carbono/análisis , Interacciones Huésped-Patógeno , Inmunidad , Cadenas Pesadas de Inmunoglobulina/genética , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Infect Immun ; 92(6): e0006524, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38722167

RESUMEN

Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.


Asunto(s)
Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Giardia lamblia , Giardiasis , Animales , Giardiasis/inmunología , Giardiasis/parasitología , Giardia lamblia/inmunología , Giardia lamblia/genética , Ratones , Vacunas Antiprotozoos/inmunología , Vacunación , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/parasitología , Humanos , Femenino
12.
Biochem Biophys Res Commun ; 733: 150707, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303524

RESUMEN

The excessive consumption of dietary sugar induces changes in gut microbiota, which is associated with obesity and metabolic dysregulation. This study investigated the effects of monosaccharide and fructooligosaccharide (FOS) intake on metabolic function and intestinal environment in germ-free (GF) mice lacking gut microbiota. GF mice were provided with a chow diet and administered a water solution containing 15 % glucose, fructose, or FOS for 4 weeks. Compared with FOS, glucose, and fructose induced increased hepatic lipid accumulation, increased adipocyte size in white adipose tissue, and upregulated hepatic lipogenic gene expression. FOS exhibited notably higher activation of hepatic AMP-activated protein kinase compared with those consuming glucose or fructose. Moreover, the number of goblet cells in the intestinal mucosa increased significantly with FOS consumption. Collectively, these findings indicate that while monosaccharides caused metabolic disorders in GF mice, FOS alleviated these disorders and increased the number of goblet cells in the intestinal mucosa. These results provide evidence for the occurrence of these effects independently of the gut microbiota.

13.
BMC Microbiol ; 24(1): 283, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085808

RESUMEN

BACKGROUND: The guts of mammals are home to trillions of microbes, forming a complex and dynamic ecosystem. Gut microbiota is an important biological barrier for maintaining immune homeostasis. Recently, the use of antibiotics to clear gut microbiota has gained popularity as a low cost and easy-to-use alternative to germ-free animals. However, the effect of the duration of the antibiotic cocktail on the gut microbiome is unclear, and more importantly, the effect of dramatic changes in the gut microbiota on intestinal tissue morphology and local immune response is rarely reported. RESULTS: We observed a significant reduction in fecal microbiota species and abundance after 1 week of exposure to an antibiotic cocktail, gavage twice daily by intragastric administration. In terms of composition, Bacteroidetes and Firmicutes were replaced by Proteobacteria. Extending antibiotic exposure to 2-3 weeks did not significantly improve the overall efficiency of microbiotal consumption. No significant histomorphological changes were observed in the first 2 weeks of antibiotic cocktail exposure, but the expression of inflammatory mediators in intestinal tissue was increased after 3 weeks of antibiotic cocktail exposure. Mendelian randomization analysis showed that Actinobacteria had a significant causal association with the increase of IL-1ß (OR = 1.65, 95% CI = 1.23 to 2.21, P = 0.007) and TNF-α (OR = 1.81, 95% CI = 1.26 to 2.61, P = 0.001). CONCLUSIONS: Our data suggest that treatment with an antibiotic cocktail lasting 1 week is sufficient to induce a significant reduction in gut microbes. 3 weeks of antibiotic exposure can lead to the colonization of persistant microbiota and cause changes in intestinal tissue and local immune responses.


Asunto(s)
Antibacterianos , Heces , Microbioma Gastrointestinal , Antibacterianos/farmacología , Animales , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-1beta/genética , Ratones , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Bacteroidetes/efectos de los fármacos , Firmicutes/efectos de los fármacos
14.
Microb Pathog ; 187: 106487, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158143

RESUMEN

Escherichia coli LF82 (LF82) is associated with Crohn's disease. The simplicity and genetic maneuverability of honeybees' gut microbiota make them suitable for studying host-microbe interactions. To understand the interaction between LF82 and host gut, LF82 was used to infect germ-free honeybees (Apis mellifera) orally. We found that LF82 successfully colonized the gut and shortened the lifespan of germ-free bees. LF82 altered the gut structure and significantly increased gut permeability. RT-qPCR showed that LF82 infection activated anti-infective immune pathways and upregulated the mRNAs levels of antimicrobial peptides in the gut of germ-free bees. The gut transcriptome showed that LF82 significantly upregulated genes involved in Notch signaling, adhesion junctions, and Toll and Imd signaling pathways and downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, protein digestion and absorption, and tyrosine metabolism. In conclusion, the human-derived enteropathogenic bacterium LF82 can successfully colonize the gut of germ-free honeybees and cause enteritis-like changes, which provides an ideal model organism for revealing the pathogenesis of bacterial-associated diseases.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Abejas , Humanos , Animales , Escherichia coli/genética , Mucosa Intestinal/microbiología , Adhesión Bacteriana , Infecciones por Escherichia coli/microbiología
15.
Scand J Immunol ; 99(2): e13336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38441196

RESUMEN

Host-microbiome interplay from birth is essential for immune imprinting and tuning. Live gut microbes and microbial-derived metabolites regulate the development and modulation of the immune system, but whether microbial metabolites solely are sufficient to induce immune maturation remains unclear. Sterile faecal filtrates (FFT) were generated from murine gut contents. Newborn germ-free (GF) mice were treated twice daily with FFT (GF-FFT) or saline (GF-NaCl) from post-natal day 5 until 4 weeks of age. A third group of GF neonates were conventionalized by the transfer of caecal microbiota with live gut microbes. Host immune compartments were comprehensively immunophenotyped and systemically analysed in all available immune-related organs using flow cytometry. Oral FFT was associated with reduced survival among neonates (n = 7/19; 36.8% mortality), while saline treatment was well tolerated (n = 1/17, 5.9% mortality). Four-week-old FFT-treated pups were comparable in body weight to GF-NaCl, and the major B-cell, conventional T-cell and unconventional T-cell subsets were unchanged from saline-treated mice. Live bacteria administered during early life induced clear changes in proportions of B cells, T cells and T-cell subsets in all mucosal tissues and secondary lymphoid organs compared to GF-FFT, including restoration of intestinal natural killer T (NKT) cells with characteristics similar to conventional pups. Our findings show that oral administration of a FFT made of microbial metabolites, antigens and bacteriophages alone is insufficient to induce normal immune development elicited by the presence of live bacteria. Reduced survival during neonatal FFT treatment suggests a potential bioactive attribute of sterile faecal filtrates.


Asunto(s)
Linfocitos B , Cloruro de Sodio , Animales , Ratones , Administración Oral , Bacterias , Heces
16.
Brain Behav Immun ; 122: 301-312, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128572

RESUMEN

Recent research has unveiled conflicting evidence regarding the link between aggression and the gut microbiome. Here, we compared behavior profiles of control, germ-free (GF), and antibiotic-treated mice, as well as re-colonized GF mice to understand the impact of the gut microbiome on aggression using the resident-intruder paradigm. Our findings revealed a link between gut microbiome depletion and higher aggression, accompanied by notable changes in urine metabolite profiles and brain gene expression. This study extends beyond classical murine models to humanized mice to reveal the clinical relevance of early-life antibiotic use on aggression. Fecal microbiome transplant from infants exposed to antibiotics in early life (and sampled one month later) into mice led to increased aggression compared to mice receiving transplants from unexposed infants. This study sheds light on the role of the gut microbiome in modulating aggression and highlights its potential avenues of action, offering insights for development of therapeutic strategies for aggression-related disorders.


Asunto(s)
Agresión , Encéfalo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Agresión/fisiología , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Trasplante de Microbiota Fecal/métodos , Masculino , Encéfalo/metabolismo , Antibacterianos/farmacología , Conducta Animal/fisiología , Vida Libre de Gérmenes , Ratones Endogámicos C57BL , Humanos
17.
Brain Behav Immun ; 116: 34-51, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030048

RESUMEN

Changes in the intestinal microbiota have been observed in patients with anti-N-methyl-D-aspartate receptor encephalitis (NMDARE). However, whether and how the intestinal microbiota is involved in the pathogenesis of NMDARE susceptibility needs to be demonstrated. Here, we first showed that germ-free (GF) mice that underwent fecal microbiota transplantation (FMT) from NMDARE patients, whose fecal microbiota exhibited low short-chain fatty acid content, decreased abundance of Lachnospiraceae, and increased abundance of Verrucomicrobiota, Akkermansia, Parabacteroides, Oscillospirales, showed significant behavioral deficits. Then, these FMT mice were actively immunized with an amino terminal domain peptide from the GluN1 subunit (GluN1356-385) to mimic the pathogenic process of NMDARE. We found that FMT mice showed an increased susceptibility to an encephalitis-like phenotype characterized by more clinical symptoms, greater pentazole (PTZ)-induced susceptibility to seizures, and higher levels of T2 weighted image (T2WI) hyperintensities following immunization. Furthermore, mice with dysbiotic microbiota had impaired blood-brain barrier integrity and a proinflammatory condition. In NMDARE-microbiota recipient mice, the levels of Evan's blue (EB) dye extravasation increased, ZO-1 and claudin-5 expression decreased, and the levels of proinflammatory cytokines (IL-1, IL-6, IL-17, TNF-α and LPS) increased. Finally, significant brain inflammation, mainly in hippocampal and cortical regions, with modest neuroinflammation, immune cell infiltration, and reduced expression of NMDA receptors were observed in NMDARE microbiota recipient mice following immunization. Overall, our findings demonstrated that intestinal dysbiosis increased NMDARE susceptibility, suggesting a new target for limiting the occurrence of the severe phenotype of NMDARE.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Humanos , Ratones , Animales , Barrera Hematoencefálica , Disbiosis , Homeostasis , Permeabilidad
18.
Scand J Gastroenterol ; 59(2): 192-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37997753

RESUMEN

OBJECTIVES: The early life microbiome has been linked to inflammatory diseases in adulthood and a role for the microbiome in bile duct inflammation is supported by both human and murine studies. We utilized the NOD.c3c4 mouse model that develops a spontaneous immune-driven biliary disease with a known contribution of the microbiome to evaluate the temporal effects of the early life microbiome. MATERIALS AND METHODS: Germ-free (GF) NOD.c3c4 mice were conventionalized into a specific pathogen free environment at birth (conventionally raised, CONV-R) or at weaning (germ-free raised, GF-R) and compared with age and gender-matched GF and conventional (CONV) NOD.c3c4 mice. At 9 weeks of age, liver pathology was assessed by conventional histology and flow cytometry immunophenotyping. RESULTS: Neonatal exposure to microbes (CONV-R) increased biliary inflammation to similar levels as regular conventional NOD.c3c4 mice, while delayed exposure to microbes (GF-R) restrained the biliary inflammation. Neutrophil infiltration was increased in all conventionalized mice compared to GF. An immunophenotype in the liver similar to CONV was restored in both CONV-R and GF-R compared to GF mice displaying a proportional increase of B cells and reduction of T cells in the liver. CONCLUSIONS: Microbial exposure during early life has a temporal impact on biliary tract inflammation in the NOD.c3c4 mouse model suggesting that age-sensitive interaction with commensal microbes have long-lasting effects on biliary immunity that can be of importance for human cholangiopathies.


Asunto(s)
Colangitis , Ratones , Humanos , Animales , Ratones Endogámicos NOD , Hígado/patología , Inflamación/patología , Modelos Animales de Enfermedad , Conductos Biliares/patología
19.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39013612

RESUMEN

AIMS: This study aimed to assess the effects of chlorine dioxide (ClO2) in water on whiteleg shrimp Penaeus vannamei, evaluating its impact on the stomach microbiota, gill transcriptome, and pathogens. METHODS AND RESULTS: ClO2 was added to the aquarium tanks containing the shrimp. The application of ClO2 to rearing water was lethal to shrimp at concentrations above 1.2 ppm. On the other hand, most of the shrimp survived at 1.0 ppm of ClO2. Microbiome analysis showed that ClO2 administration at 1.0 ppm significantly reduced the α-diversity of bacterial community composition in the shrimp stomach, and this condition persisted for at least 7 days. Transcriptome analysis of shrimp gill revealed that ClO2 treatment caused massive change of the gene expression profile, including stress response genes. However, after 7 days of the treatment, the gene expression profile was similar to that of shrimp in the untreated control group, suggesting a recovery to the normal state. This 1.0-ppm ClO2 significantly reduced shrimp mortality in artificial challenges with an acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus and white spot syndrome virus, which were added to rearing water. CONCLUSIONS: The use of ClO2 at appropriate concentrations effectively eliminates a significant portion of the bacteria in the shrimp stomach and pathogens in the water. The results of this study provide fundamental knowledge on the disinfection of pathogens in water using ClO2 and the creation of semi germ-free shrimp, which has significantly decreased microbiome in the stomach.


Asunto(s)
Compuestos de Cloro , Branquias , Óxidos , Penaeidae , Transcriptoma , Compuestos de Cloro/farmacología , Animales , Penaeidae/microbiología , Óxidos/farmacología , Branquias/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Desinfectantes/farmacología , Acuicultura , Vibrio parahaemolyticus/efectos de los fármacos
20.
BMC Biol ; 21(1): 207, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794486

RESUMEN

BACKGROUND: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS: The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.


Asunto(s)
Intestinos , Microbiota , Embarazo , Masculino , Femenino , Animales , Ratones , Placenta/metabolismo , Encéfalo/metabolismo , Feto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA