RESUMEN
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Ensayos Analíticos de Alto Rendimiento , Enfermedad de Parkinson , Pliegue de Proteína , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Pliegue de Proteína/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular TumoralRESUMEN
Gaucher disease (GD) is caused by biallelic GBA1/Gba1 mutations that encode defective glucocerebrosidase (GCase). Progranulin (PGRN, encoded by GRN/Grn) is a modifier of GCase, but the interplay between PGRN and GCase, specifically GBA1/Gba1 mutations, contributing to GD severity is unclear. Mouse models were developed with various dosages of Gba1 D409V mutation against the PGRN deficiency (Grn-/-) [Grn-/-;Gba1D409V/WT (PG9Vwt), Grn-/-;Gba1D409V/D409V (PG9V), Grn-/-;Gba1D409V/Null (PG9VN)]. Disease progression in those mouse models was characterized by biochemical, pathological, transcriptomic, and neurobehavioral analyses. Compared to PG9Vwt, Grn-/-;Gba1WT/Null and Grn-/- mice that had a higher level of GCase activity and undetectable pathologies, homozygous or hemizygous D409V in PG9V or PG9VN, respectively, resulted in profound inflammation and neurodegeneration. PG9VN mice exhibited much earlier onset, shorter life span, tissue fibrosis, and more severe phenotypes than PG9V mice. Glycosphingolipid accumulation, inflammatory responses, lysosomal-autophagy dysfunction, microgliosis, retinal gliosis, as well as α-Synuclein increases were much more pronounced in PG9VN mice. Neurodegeneration in PG9VN was characterized by activated microglial phagocytosis of impaired neurons and programmed cell death due to necrosis and, possibly, pyroptosis. Brain transcriptomic analyses revealed the intrinsic relationship between D409V dosage, and the degree of altered gene expression related to lysosome dysfunction, microgliosis, and neurodegeneration in GD, suggesting the disease severity is dependent on a GCase activity threshold related to Gba1 D409V dosage and loss of PGRN. These findings contribute to a deeper understanding of GD pathogenesis by elucidating additional underlying mechanisms of interplay between PGRN and Gba1 mutation dosage in modulating GCase function and disease severity in GD and GBA1-associated neurodegenerative diseases.
Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Gaucher , Glucosilceramidasa , Mutación , Progranulinas , Animales , Progranulinas/genética , Ratones , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Humanos , Ratones Noqueados , Dosificación de GenRESUMEN
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low ß-glucocerebrosidase (ß-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant ß-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based ß-GC activity assay followed by reporter trafficking assay utilizing ß-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the ß-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their ß-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.
Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Células HeLa , Lisosomas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismoRESUMEN
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of ß-glucocerebrosidase (ß-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated ß-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the ß-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Estrés del Retículo Endoplásmico , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/terapia , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Células HeLa , Lisosomas/metabolismo , Proteínas Reguladoras de la Apoptosis/genéticaRESUMEN
The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.
Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Sinucleinopatías , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Hipocampo/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/patologíaRESUMEN
Gaucher disease (GD) is the most common lysosomal storage disease. It is a multisystemic metabolic disease caused by GBA pathogenic mutations. Although the general symptoms have been known for a long time, new treatment possibilities, the detection of different biomarkers, and innovations in diagnosis and follow-up have paved the way for further studies. Recent studies have shown that the immune system has become an essential factor associated with disease progression. The role of Gaucher cells in the disease is well characterized. In addition to phagocytic macrophage cells, lymphocytes, complement system, and inflammatory pathway elements are also implicated in GD as they were shown to be the underlying factors causing associated pathologies such as Parkinson's. In this article, the relationship between the GD and the immune system has been examined and reviewed in light of new findings.
Asunto(s)
Enfermedad de Gaucher , Inflamación , Enfermedad de Gaucher/inmunología , Enfermedad de Gaucher/genética , Humanos , Inflamación/inmunología , Inflamación/patología , Animales , Glucosilceramidasa/genética , InmunidadRESUMEN
BACKGROUND: SNCA p.V15A was reported in five families. In vitro models showed increased aggregation and seeding activity, mitochondrial damage, and apoptosis. Mutant flies had reduced flying ability and survival. OBJECTIVES: To clinically and functionally evaluate SNCA p.V15A in a large Italian family with Parkinson's disease (PD). METHODS: Genetic diagnosis was reached through next-generation sequencing. Pathogenicity was assessed by molecular dynamics simulation and biochemical studies on peripheral blood mononuclear cells (PBMCs). RESULTS: Five siblings carried SNCA p.V15A; three developed bradykinetic-rigid PD in their 50s with rapid motor progression and variable cognitive impairment. A fourth sibling had isolated mood disturbance, whereas the fifth was still unaffected at age 47. The mutant protein showed decreased stability and an unstable folded structure. Proband's PBMCs showed elevated total and phosphorylated α-synuclein (α-syn) levels and significantly reduced glucocerebrosidase activity. CONCLUSION: This study demonstrates accumulation of α-synV15A in PBMCs and strengthens the link between α-syn pathophysiology and glucocerebrosidase dysfunction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Leucocitos Mononucleares/metabolismo , Linaje , Mutación/genética , AncianoRESUMEN
This research investigates potential therapeutic targets for gastric cancer, focusing on ferroptosis-related genes. Gastric cancer is known for its lower survival rates, necessitating new treatment strategies. This study employed Mendelian randomization to identify ferroptosis-related genes and methylation sites in gastric cancer, examining correlations between Helicobacter pylori infection, GBA1 gene expression, and promoter methylation with single-cell datasets and the TCGA-STAD database. We used Helicobacter pylori-infected gastric cancer cell models and used next-generation sequencing to monitor methylation changes pre- and post-infection. GBA1 expression levels were assessed via qRT-PCR and Western blot both before and after infection. The effect of Helicobacter pylori on GC cell proliferation was analyzed using CCK-8 and EdU assays after knocking down the GBA1 gene. The association between Helicobacter pylori infection and ferroptosis, including its reversibility after GBA1 knockdown, was evaluated using FerrOrange, GSH, MDA, and C11-BODIPY assays. Mass spectrometry measured the impact of Helicobacter pylori and GBA1 knockdown on lipid metabolism. An in vivo subcutaneous tumor-bearing model was also established to confirm these findings. Mendelian randomization analysis revealed that high GBA1 expression and reduced methylation levels of its promoter are risk factors for gastric cancer. Single-cell sequencing and TCGA-STAD datasets indicated a positive correlation between Helicobacter pylori infection and GBA1 expression, with a concurrent negative correlation between GBA1 promoter methylation and GBA1 expression. In gastric cancer cell lines, Helicobacter pylori infection was observed to enhance GBA1 expression and decrease methylation levels at its promoter. Additionally, Helicobacter pylori promoted GC cell proliferation, an effect mitigated by knocking down GBA1. Infection also reduced lipid peroxidation, increased glutathione levels, and impeded ferroptosis in GC cells; however, these effects were reversed following GBA1 knockdown. Changes in sphingolipid metabolism induced by I were detected in GC cell lines. In vivo experiments using a subcutaneous tumor-bearing model demonstrated that Helicobacter pylori infection fosters tumorigenesis in GC cells. Our study demonstrates that Helicobacter pylori infection triggers demethylation and upregulation of GBA1, subsequently inhibiting ferroptosis in gastric cancer cells. These findings suggest that targeting the GBA1 pathway may offer a novel therapeutic approach for managing gastric cancer.
RESUMEN
Gaucher disease (GD) stands as one of the most prevalent lysosomal disorders, yet neuronopathic GD (nGD) is an uncommon subset characterized by a wide array of clinical manifestations that complicate diagnosis, particularly when neurological symptoms are understated. nGD may manifest as the acute neuronopathic type, or GD type 2 (GD2), either prenatally or within the first weeks to months of life, whereas GD type 3 (GD3) symptoms may emerge at any point during childhood or occasionally in adolescence. The clinical presentation encompasses severe systemic involvement to mild visceral disease, often coupled with a spectrum of progressive neurological signs and symptoms such as cognitive impairment, ataxia, seizures, myoclonus, varying degrees of brainstem dysfunction presenting with stridor, apneic episodes, and/or impaired swallowing. This manuscript aims to provide a comprehensive review of the incidence, distinctive presentations, and diverse clinical phenotypes of nGD across various countries and regions. It will explore the natural history of the neurodegenerative process in GD, shedding light on its various manifestations during infancy and childhood, and offer insights into the diagnostic journey, the challenges faced in the clinical management, and current and investigative therapeutic approaches for GD's neurological variants.
RESUMEN
BACKGROUND: To date, no disease modifying therapies are available for Parkinson's disease (PD). Since PD is the second most prevalent neurodegenerative disorder, there is a high demand for such therapies. Both environmental and genetic risk factors play an important role in the etiology and progression of PD. The most common genetic risk factor for PD is a mutation in the GBA1(GBA)-gene, encoding the lysosomal enzyme glucocerebrosidase (GCase). The mucolytic ambroxol is a repurposed drug, which has shown the property to upregulate GCase activity in-vitro and in-vivo. Ambroxol therefore has the potency to become a disease modifying therapy in PD, which was the reason to design this randomized controlled trial with ambroxol in PD patients. METHODS: This trial is a single-center, double-blind, randomized, placebo-controlled study, including 80 PD patients with a GBA mutation, receiving either ambroxol 1800 mg/day or placebo for 48 weeks. The primary outcome measure is the Unified Parkinson's Disease Rating Scale motor subscore (part III) of the Movement Disorder Society (MDS-UPDRSIII) in the practically defined off-state at 60 weeks (after a 12-week washout period). Secondary outcomes include a 3,4-dihydroxy-6-18F-fluoro-I-phenylalanine ([18F]FDOPA) PET-scan of the brain, Magnetic Resonance Imaging (with resting state f-MRI and Diffusion Tensor Imaging), GCase activity, both intra- and extracellularly, sphingolipid profiles in plasma, Montreal Cognitive Assessment (MoCA), quality of life (QoL) measured by the Parkinson's Disease Questionnaire (PDQ-39) and the Non-Motor Symptom Scale (NMSS) questionnaire. DISCUSSION: Ambroxol up to 1200 mg/day has shown effects on human cerebrospinal fluid endpoints, which supports at least passage of the blood-brain-barrier. The dose titration in this trial up to 1800 mg/day will reveal if this dose level is safe and also effective in modifying the course of the disease. TRIAL REGISTRATION: NCT05830396. Registration date: March 20, 2023.
Asunto(s)
Ambroxol , Glucosilceramidasa , Mutación , Enfermedad de Parkinson , Humanos , Ambroxol/administración & dosificación , Ambroxol/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/diagnóstico por imagen , Glucosilceramidasa/genética , Método Doble Ciego , Masculino , Femenino , Anciano , Persona de Mediana Edad , Resultado del Tratamiento , Expectorantes/uso terapéutico , Expectorantes/administración & dosificación , AdultoRESUMEN
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as ß-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in ß-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Asunto(s)
Enfermedad de Gaucher , Iminoazúcares , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa , Pirrolidinas/farmacología , Inhibidores Enzimáticos/farmacologíaRESUMEN
The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and ß-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human ß-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and ß-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.
Asunto(s)
Compuestos Azo , Inhibidores Enzimáticos , Glicósido Hidrolasas , Glicósidos , Iminoazúcares , Humanos , Compuestos Azo/química , Compuestos Azo/farmacología , Compuestos Azo/síntesis química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Glicósidos/química , Glicósidos/farmacología , Glicósidos/síntesis química , Iminoazúcares/química , Iminoazúcares/farmacología , Iminoazúcares/síntesis química , Luz , Estructura Molecular , Relación Estructura-Actividad , Glucosilceramidasa/química , Glucosilceramidasa/metabolismo , Glucosilceramidasa/farmacologíaRESUMEN
Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.
Asunto(s)
Berberina , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudios de Casos y Controles , Coptis chinensis , Neuronas Dopaminérgicas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , RizomaRESUMEN
To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.
Asunto(s)
Lisosomas , Macrófagos , Enfermedad de Parkinson , Serina-Treonina Quinasas TOR , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Lisosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Línea Celular Tumoral , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Relación Dosis-Respuesta a Droga , Glucosilceramidasa/metabolismo , Glucosilceramidasa/antagonistas & inhibidores , NaftiridinasRESUMEN
BACKGROUND: Enzyme replacement therapy (ERT) has revolutionised the management of patients with Gaucher disease (GD). In 2018, we published the safety and efficacy of rapid 10-min infusion of velaglucerase alfa in previously treated patients, mostly on low-dose therapy. AIM: To improve quality of life (QoL) for patients needing lifelong bi-weekly infusions by introducing a 10-min infusion instead of 1 h per label in patients naive to ERT and on high-dose therapy. METHODS: Fifteen naive patients were enrolled; all received bi-weekly infusions of 60 units/kgBW velaglucerase alfa; the infusion rate was gradually reduced in the hospital, followed by home infusions. Each infusion was followed for safety. Efficacy parameters were assessed every 3 months. Patient-reported outcome questionnaires were collected at baseline and follow-up. RESULTS: Ten-minute rapid infusions were well tolerated without related severe adverse events (SAEs). Two patients experienced a non-related SAE and another a possibly related AE. In three patients, the infusion rate was increased to 30 or 60 min (two because of suboptimal response and one because of AE). Two patients dropped out because of an unwillingness to attend follow-up visits during the COVID-19 pandemic. All 13 remaining patients reached the 24-month end-point. The platelet counts increased by a median (range) of 68.38% (12.5-300%) and the lyso-Gb1 levels decreased by 62.6% (32.9-89.9%). CONCLUSION: Home therapy with rapid infusion of high-dose velaglucerase alfa was a safe, effective and preferable alternative for patients with GD naïve to treatment. We believe that shortening the infusion time improves the QoL of patients with GD who have a lifelong commitment to intravenous therapy.
Asunto(s)
Enfermedad de Gaucher , Humanos , Calidad de Vida , Pandemias , Glucosilceramidasa/efectos adversos , Terapia de Reemplazo Enzimático , Resultado del TratamientoRESUMEN
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Proteínas de Membrana de los Lisosomas , Receptores Depuradores , Saposinas , Glucosilceramidasa/genética , Glucosilceramidasa/deficiencia , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Saposinas/deficiencia , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Hexosaminidasas/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/deficiencia , Masculino , FemeninoRESUMEN
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Asunto(s)
Metabolismo de los Lípidos , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Animales , Lípidos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , MutaciónRESUMEN
Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.
Asunto(s)
Enfermedad de Gaucher , Psicosina/análogos & derivados , Ratones , Humanos , Animales , Anciano , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Modelos Animales de Enfermedad , Encéfalo/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , MutaciónRESUMEN
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 µM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Asunto(s)
Apoptosis , Autofagia , Fibroblastos , Glucosilceramidasa , Mitocondrias , Estrés Oxidativo , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Humanos , Fibroblastos/metabolismo , Autofagia/genética , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Piel/metabolismo , Piel/patología , Lisosomas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , MutaciónRESUMEN
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.