Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100711, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182041

RESUMEN

Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array, we explored the interactions of glycans with C-type lectins, C-reactive protein, and sera from T. suis-infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems and also exhibit species-specific features distinguishing its glycome from those of other nematodes.


Asunto(s)
Fosforilcolina , Trichuris , Animales , Porcinos , Trichuris/química , Trichuris/metabolismo , Polisacáridos/metabolismo , Glicosilación , Sistema Inmunológico/metabolismo
2.
Glycobiology ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058648

RESUMEN

The Human Glycome Atlas (HGA) Project was launched in April 2023, spearheaded by three Japanese institutes: the Tokai National Higher Education and Research System, the National Institutes of Natural Sciences, and Soka University. This was the first time that a field in the life sciences was adopted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for a Large-scale Academic Frontiers Promotion Project. This project aims to construct a knowledgebase of human glycans and glycoproteins as a standard for the human glycome. A high-throughput pipeline for comprehensively analyzing 20,000 blood samples in its first five years is planned, at which time an access-controlled version of a human glycomics knowledgebase, called TOHSA, will be released. By the end of the final tenth year, TOHSA will provide a central resource linking human glycan data with other omics data including disease-related information.

3.
Glycobiology ; 34(8)2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869882

RESUMEN

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Asunto(s)
Manosa , Polisacáridos , Humanos , Femenino , Polisacáridos/metabolismo , Polisacáridos/química , Manosa/metabolismo , Manosa/química , Persona de Mediana Edad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Glicómica , Mama/metabolismo , Mama/química , Mama/patología , Fucosa/metabolismo , Fucosa/química , Adulto , Microambiente Tumoral
4.
Br J Haematol ; 204(1): 315-323, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37822168

RESUMEN

Despite the efficacy of splenectomy for chronic immune thrombocytopenia (ITP), its considerable failure rate and its possible related complications prove the need for further research into potential predictors of response. The platelet sequestration site determined by 111 In-labelled autologous platelet scintigraphy has been proposed to predict splenectomy outcome, but without standardisation in clinical practice. Here, we conducted a single-centre study by analysing a cohort of splenectomised patients with ITP in whom 111 In-scintigraphy was performed at La Paz University Hospital in Madrid to evaluate the predictive value of the platelet kinetic studies. We also studied other factors that could impact the splenectomy outcome, such as patient and platelet characteristics. A total of 51 patients were splenectomised, and 82.3% responded. The splenic sequestration pattern predicted a higher rate of complete response up to 12 months after splenectomy (p = 0.005), with 90% sensitivity and 77% specificity. Neither age, comorbidities, therapy lines nor previous response to them showed any association with response. Results from the platelet characteristics analysis revealed a significant loss of sialic acid in platelets from the non-responding patients compared with those who maintained a response (p = 0.0017). Our findings highlight the value of splenic sequestration as an independent predictor of splenectomy response.


Asunto(s)
Hiperesplenismo , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopénica Idiopática/cirugía , Esplenectomía , Cinética , Plaquetas/fisiología
5.
J Transl Med ; 22(1): 456, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745252

RESUMEN

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Asunto(s)
Hepatitis Autoinmune , Polisacáridos , Humanos , Hepatitis Autoinmune/sangre , Femenino , Masculino , Polisacáridos/sangre , Polisacáridos/metabolismo , Persona de Mediana Edad , Glicosilación , Estudios de Casos y Controles , Inmunoglobulina G/sangre , Hepatopatías/sangre , Adulto , Estudios Transversales , Anciano
6.
J Sep Sci ; 47(11): e2400170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863084

RESUMEN

The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.


Asunto(s)
Electroforesis Capilar , Glicómica , Polisacáridos , Glicómica/métodos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/análisis , Humanos , Cromatografía Liquida , Electroforesis por Microchip/métodos
7.
Crit Rev Biochem Mol Biol ; 56(3): 301-320, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820453

RESUMEN

Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.


Asunto(s)
Glicómica , Biología de Sistemas , Animales , Glicosilación , Humanos , Polisacáridos/genética , Polisacáridos/metabolismo
8.
Proteomics ; : e2300065, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474487

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that can be released by all type of cells. Whereas, as one of the most common post-translational modifications, glycosylation plays a vital role in various biological functions of EVs, such as EV biogenesis, sorting, and cellular recognition. Nevertheless, compared with studies on RNAs or proteins, those investigating the glycoconjugates of EVs are limited. An in-depth investigation of N-glycosylation of EVs can improve the understanding of the biological functions of EVs and help to exploit EVs from different perspectives. The general focus of studies on glycosylation of EVs primarily includes isolation and characterization of EVs, preparation of glycoproteome/glycome samples and MS analysis. However, the low content of EVs and non-standard separation methods for downstream analysis are the main limitations of these studies. In this review, we highlight the importance of glycopeptide/glycan enrichment and derivatization owing to the low abundance of glycoproteins and the low ionization efficiency of glycans. Diverse fragmentation patterns and professional analytical software are indispensable for analysing glycosylation via MS. Altogether, this review summarises recent studies on glycosylation of EVs, revealing the role of EVs in disease progression and their remarkable potential as biomarkers.

9.
Glycobiology ; 33(12): 1106-1116, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37741057

RESUMEN

Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Simbiosis , Glicosilación , Glicómica
10.
BMC Med ; 21(1): 231, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400796

RESUMEN

BACKGROUND: A dysregulated postprandial metabolic response is a risk factor for chronic diseases, including type 2 diabetes mellitus (T2DM). The plasma protein N-glycome is implicated in both lipid metabolism and T2DM risk. Hence, we first investigate the relationship between the N-glycome and postprandial metabolism and then explore the mediatory role of the plasma N-glycome in the relationship between postprandial lipaemia and T2DM. METHODS: We included 995 individuals from the ZOE-PREDICT 1 study with plasma N-glycans measured by ultra-performance liquid chromatography at fasting and triglyceride, insulin, and glucose levels measured at fasting and following a mixed-meal challenge. Linear mixed models were used to investigate the associations between plasma protein N-glycosylation and metabolic response (fasting, postprandial (Cmax), or change from fasting). A mediation analysis was used to further explore the relationship of the N-glycome in the prediabetes (HbA1c = 39-47 mmol/mol (5.7-6.5%))-postprandial lipaemia association. RESULTS: We identified 36 out of 55 glycans significantly associated with postprandial triglycerides (Cmax ß ranging from -0.28 for low-branched glycans to 0.30 for GP26) after adjusting for covariates and multiple testing (padjusted < 0.05). N-glycome composition explained 12.6% of the variance in postprandial triglycerides not already explained by traditional risk factors. Twenty-seven glycans were also associated with postprandial glucose and 12 with postprandial insulin. Additionally, 3 of the postprandial triglyceride-associated glycans (GP9, GP11, and GP32) also correlate with prediabetes and partially mediate the relationship between prediabetes and postprandial triglycerides. CONCLUSIONS: This study provides a comprehensive overview of the interconnections between plasma protein N-glycosylation and postprandial responses, demonstrating the incremental predictive benefit of N-glycans. We also suggest a considerable proportion of the effect of prediabetes on postprandial triglycerides is mediated by some plasma N-glycans.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Estado Prediabético , Humanos , Glucemia/metabolismo , Triglicéridos , Insulina , Polisacáridos , Proteínas Sanguíneas
11.
Mol Cell Proteomics ; 20: 100024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32994314

RESUMEN

Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.


Asunto(s)
Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Animales , Evolución Biológica , Glicómica , Glicosilación , Humanos , Procesamiento Proteico-Postraduccional , Proteómica
12.
Mol Cell Proteomics ; 20: 100130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34358619

RESUMEN

N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with ∼120 N-glycan compositions in each region, revealing significant differences in "brain-type" glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Polisacáridos/metabolismo , Animales , Cromatografía Liquida , Femenino , Glicómica , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Nanotecnología
13.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894820

RESUMEN

Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.


Asunto(s)
Trastorno del Espectro Autista , Nacimiento Prematuro , Femenino , Humanos , Recién Nacido , Embarazo , Trastorno del Espectro Autista/metabolismo , Epítopos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glutamatos/metabolismo , Placenta/metabolismo , Polisacáridos/metabolismo , Nacimiento Prematuro/metabolismo
14.
J Proteome Res ; 21(2): 360-374, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34985888

RESUMEN

This study aimed to investigate the highly differentiated urothelial apical surface glycome. The functions of the mammalian urothelium, lining the majority of the urinary tract and providing a barrier against toxins in urine, are dependent on the correct differentiation of urothelial cells, relying on protein expression, modification, and complex assembly to regulate the formation of multiple differentiated cell layers. Protein glycosylation, a poorly studied aspect of urothelial differentiation, contributes to the apical glycome and is implicated in the development of urothelial diseases. To enable surface glycome characterization, we developed a method to collect tissue apical surface N- and O-glycans. A simple, novel device using basic laboratory supplies was developed for enzymatic shaving of the luminal bladder urothelial surface, with subsequent release and mass spectrometric analysis of apical surface O- and N-glycans, the first normal mammalian urothelial N-glycome to be defined. Trypsinization of superficial glycoproteins was tracked using immunolabeling of the apically expressed uroplakin 3a protein to optimize enzymatic release, without compromising the integrity of the superficial urothelial layer. The approach developed for releasing apical tissue surface glycans allowed for comparison with the N-glycome of the total porcine bladder urothelial cells and thus identification of apical surface glycans as candidates implicated in the urothelial barrier function. Data are available in MassIve: MSV000087851.


Asunto(s)
Ápice del Diente , Urotelio , Animales , Diferenciación Celular , Células Epiteliales , Porcinos , Vejiga Urinaria/metabolismo , Urotelio/metabolismo
15.
J Proteome Res ; 21(8): 1974-1985, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35757850

RESUMEN

A key to improving vaccine design and vaccination strategy is to understand the mechanism behind the variation of vaccine response with host factors. Glycosylation, a critical modulator of immunity, has no clear role in determining vaccine responses. To gain insight into the association between glycosylation and vaccine-induced antibody levels, we profiled the pre- and postvaccination serum protein glycomes of 160 Caucasian adults receiving the FLUZONE influenza vaccine during the 2019-2020 influenza season using lectin microarray technology. We found that prevaccination levels of Lewis A antigen (Lea) are significantly higher in nonresponders than responders. Glycoproteomic analysis showed that Lea-bearing proteins are enriched in complement activation pathways, suggesting a potential role of glycosylation in tuning the activities of complement proteins, which may be implicated in mounting vaccine responses. In addition, we observed a postvaccination increase in sialyl Lewis X antigen (sLex) and a decrease in high mannose glycans among high responders, which were not observed in nonresponders. These data suggest that the immune system may actively modulate glycosylation as part of its effort to establish effective protection postvaccination.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Glicosilación , Humanos , Gripe Humana/prevención & control , Manosa/metabolismo , Polisacáridos/metabolismo , Proteínas/metabolismo
16.
J Biol Chem ; 296: 100448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617880

RESUMEN

Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.


Asunto(s)
Ingeniería Genética , Animales , Edición Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glicoproteínas/metabolismo , Glicosilación , Humanos , Mamíferos , Polisacáridos/metabolismo
17.
Glycoconj J ; 39(3): 443-471, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35334027

RESUMEN

The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.


Asunto(s)
Glicómica , Polisacáridos , Encéfalo/metabolismo , Glicosilación , Polisacáridos/química
18.
Mol Cell Proteomics ; 19(11): 1767-1776, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32737218

RESUMEN

We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.


Asunto(s)
Glicómica/métodos , Polisacáridos/análisis , Polisacáridos/orina , Espectrometría de Masas en Tándem/métodos , Adulto , Niño , Preescolar , Cromatografía Liquida , Estudios de Cohortes , Femenino , Fucosa/orina , Glicosilación , Humanos , Lactante , Masculino , Manosa/metabolismo , Persona de Mediana Edad
19.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500281

RESUMEN

Protein therapeutics have recently gained high importance in general health care along with applied clinical research. Therefore, it is important to understand the structure-function relationship of these new generation drugs. Asparagine-bound carbohydrates represent an important critical quality attribute of therapeutic glycoproteins, reportedly impacting the efficacy, immunogenicity, clearance rate, stability, solubility, pharmacokinetics and mode of action of the product. In most instances, these linked N-glycans are analyzed in their unconjugated form after endoglycosidase-mediated release, e.g., PNGase F-mediated liberation. In this paper, first, N-glycan release kinetics were evaluated using our previously reported in-house produced 6His-PNGase F enzyme. The resulting deglycosylation products were quantified by sodium dodecyl sulfate capillary gel electrophoresis to determine the optimal digestion time. Next, the effect of sample glucose content was investigated as a potential endoglycosidase activity modifier. A comparative Michaelis-Menten kinetics study was performed between the 6His-PNGase F and a frequently employed commercial PNGase F product with and without the presence of glucose in the digestion reaction mixture. It was found that 1 mg/mL glucose in the sample activated the 6His-PNGase F enzyme, while did not affect the release efficiency of the commercial PNGase F. Capillary isoelectric focusing revealed subtle charge heterogeneity differences between the two endoglycosidases, manifested by the lack of extra acidic charge variants in the cIEF trace of the 6His-PNGase F enzyme, which might have possibly influenced the glucose-mediated enzyme activity differences.


Asunto(s)
Glucosa , Polisacáridos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Polisacáridos/metabolismo , Electroforesis Capilar/métodos , Glicoproteínas/metabolismo , Glicósido Hidrolasas
20.
J Proteome Res ; 20(4): 2069-2075, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657805

RESUMEN

Laser microdissection-assisted lectin microarray has been used to obtain quantitative and qualitative information on glycans on proteins expressed in microscopic regions of formalin-fixed paraffin-embedded tissue sections. For the effective visualization of this "tissue glycome mapping" data, a novel online tool, LM-GlycomeAtlas (https://glycosmos.org/lm_glycomeatlas/index), was launched in the freely available glycoscience portal, the GlyCosmos Portal (https://glycosmos.org). In LM-GlycomeAtlas Version 1.0, nine tissues from normal mice were used to provide one data set of glycomic profiles. Here we introduce an updated version of LM-GlycomeAtlas, which includes more spatial information. We designed it to deposit multiple data sets of glycomic profiles with high-resolution histological images, which included staining images with multiple lectins on the array. The additionally implemented interfaces allow users to display multiple histological images of interest (e.g., diseased and normal mice), thereby facilitating the evaluation of tissue glycomic profiling and glyco-pathological analysis. Using these updated interfaces, 451 glycomic profiling data and 42 histological images obtained from 14 tissues of normal and diseased mice were successfully visualized. By easy integration with other tools for glycoproteomic data and protein glycosylation machinery, LM-GlycomeAtlas will be one of the most valuable open resources that contribute to both glycoscience and proteomics communities.


Asunto(s)
Glicómica , Lectinas , Animales , Histocitoquímica , Ratones , Análisis por Micromatrices , Polisacáridos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA