Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912572

RESUMEN

The neurons of the three cerebellar nuclei (CN) are the primary output neurons of the cerebellum. The excitatory neurons (e) of the medial (m) CN (eCNm) were recently divided into molecularly defined subdomains in the adult; however, how they are established during development is not known. We define molecular subdomains of the mouse embryonic eCNm using single-cell RNA-sequencing and spatial expression analysis, showing that they evolve during embryogenesis to prefigure the adult. Furthermore, eCNm are transcriptionally divergent from cells in the other nuclei by embryonic day 14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to loss of approximately half of the embryonic eCNm. We demonstrate that mutation of En1/2 in the embryonic eCNm results in death of specific posterior eCNm molecular subdomains and downregulation of TBR2 (EOMES) in an anterior embryonic subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the other excitatory neurons (granule and unipolar brush cells). Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Neuronas , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones , Neuronas/metabolismo , Neuronas/citología , Supervivencia Celular/genética , Diferenciación Celular/genética , Cerebelo/embriología , Cerebelo/metabolismo , Cerebelo/citología , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Núcleos Cerebelosos/metabolismo , Núcleos Cerebelosos/embriología , Núcleos Cerebelosos/citología , Análisis de la Célula Individual , Proteínas del Tejido Nervioso
2.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38664011

RESUMEN

Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.


Asunto(s)
Calcio , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Neuronas , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Masculino , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Canales de Potasio Shal/metabolismo , Canales de Potasio Shal/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
3.
EMBO J ; 40(14): e105712, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34057742

RESUMEN

During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Ciclina D1/metabolismo , Gránulos Citoplasmáticos/metabolismo , Fosforilación/fisiología , Células Madre/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas Hedgehog/metabolismo , Ratones , Neurogénesis/fisiología , Transducción de Señal/fisiología , Factores de Transcripción
4.
Proc Natl Acad Sci U S A ; 119(32): e2201151119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930664

RESUMEN

Epilepsy is a devastating brain disorder for which effective treatments are very limited. There is growing interest in early intervention, which requires a better mechanistic understanding of the early stages of this disorder. While diverse brain insults can lead to epileptic activity, a common cellular mechanism relies on uncontrolled recurrent excitatory activity. In the dentate gyrus, excitatory mossy cells (MCs) project extensively onto granule cells (GCs) throughout the hippocampus, thus establishing a recurrent MC-GC-MC excitatory loop. MCs are implicated in temporal lobe epilepsy, a common form of epilepsy, but their role during initial seizures (i.e., before the characteristic MC loss that occurs in late stages) is unclear. Here, we show that initial seizures acutely induced with an intraperitoneal kainic acid (KA) injection in adult mice, a well-established model that leads to experimental epilepsy, not only increased MC and GC activity in vivo but also triggered a brain-derived neurotrophic factor (BDNF)-dependent long-term potentiation (LTP) at MC-GC excitatory synapses. Moreover, in vivo induction of MC-GC LTP using MC-selective optogenetic stimulation worsened KA-induced seizures. Conversely, Bdnf genetic removal from GCs, which abolishes LTP, and selective MC silencing were both anticonvulsant. Thus, initial seizures are associated with MC-GC synaptic strengthening, which may promote later epileptic activity. Our findings reveal a potential mechanism of epileptogenesis that may help in developing therapeutic strategies for early intervention.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Epilepsia , Potenciación a Largo Plazo , Fibras Musgosas del Hipocampo , Convulsiones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/fisiología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Ácido Kaínico/farmacología , Ratones , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/fisiopatología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
5.
J Physiol ; 602(8): 1703-1732, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594842

RESUMEN

We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons. Cox's method for correcting space-clamp errors was extended to the case of an isopotential compartment with attached neurites. The method was applied to voltage-ramp experiments, in which iNaP is assumed to gate instantaneously. The raw estimates of iNaP led to predicted clamp currents that were at variance with observation, hence an algorithm was devised to improve these estimates. Optionally, the method also allows an estimate of the membrane specific capacitance, although values of the axial resistivity and seal resistance must be provided. Assuming that membrane specific capacitance and axial resistivity were constant, we conclude that seal resistance continued to fall after adding TTX to the bath. This might have been attributable to a further deterioration of the seal after baseline rather than an unlikely effect of TTX. There was an increase in the membrane specific resistance in TTX. The reason for this is unknown, but it meant that iNaP could not be determined by simple subtraction. Attempts to account for iNaP with a Hodgkin-Huxley model of the transient sodium conductance met with mixed results. One thing to emerge was the importance of voltage shifts. Also, a large variability in previously reported values of transient sodium conductance in mossy fibre boutons made comparisons with our results difficult. Various other possible sources of error are discussed. Simulations suggest a role for iNaP in modulating the axonal attenuation of EPSPs. KEY POINTS: We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons, using a KCl-based internal (pipette) solution and correcting for the liquid junction potential (2 mV). Space-clamp errors and deterioration of the patch-clamp seal during the experiment were corrected for by compartmental modelling. Attempts to account for iNaP in terms of the transient sodium conductance met with mixed results. One possibility is that the transient sodium conductance is higher in mossy fibre boutons than in the axon shaft. The analysis illustrates the need to account for various voltage shifts (Donnan potentials, liquid junction potentials and, possibly, other voltage shifts). Simulations suggest a role for iNaP in modulating the axonal attenuation of excitatory postsynaptic potentials, hence analog signalling by dentate granule cells.


Asunto(s)
Fibras Musgosas del Hipocampo , Sodio , Ratas , Animales , Terminales Presinápticos
6.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996985

RESUMEN

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Asunto(s)
Cerebelo , Disautonomía Familiar , Ratones Noqueados , Fenotipo , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/patología , Cerebelo/metabolismo , Cerebelo/patología , Ratones , Modelos Animales de Enfermedad , Ataxia/genética , Ataxia/patología , Ataxia/metabolismo , Células-Madre Neurales/metabolismo , Apoptosis/fisiología , Péptidos y Proteínas de Señalización Intracelular
7.
Hippocampus ; 34(1): 14-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950569

RESUMEN

Mnemonic discrimination (MD) may be dependent on oscillatory perforant path input frequencies to the hippocampus in a "U"-shaped fashion, where some studies show that slow and fast input frequencies support MD, while other studies show that intermediate frequencies disrupt MD. We hypothesize that pattern separation (PS) underlies frequency-dependent MD performance. We aim to study, in a computational model of the hippocampal dentate gyrus (DG), the network and cellular mechanisms governing this putative "U"-shaped PS relationship. We implemented a biophysical model of the DG that produces the hypothesized "U"-shaped input frequency-PS relationship, and its associated oscillatory electrophysiological signatures. We subsequently evaluated the network's PS ability using an adapted spatiotemporal task. We undertook systematic lesion studies to identify the network-level mechanisms driving the "U"-shaped input frequency-PS relationship. A minimal circuit of a single granule cell (GC) stimulated with oscillatory inputs was also used to study potential cellular-level mechanisms. Lesioning synapses onto GCs did not impact the "U"-shaped input frequency-PS relationship. Furthermore, GC inhibition limits PS performance for fast frequency inputs, while enhancing PS for slow frequency inputs. GC interspike interval was found to be input frequency dependent in a "U"-shaped fashion, paralleling frequency-dependent PS observed at the network level. Additionally, GCs showed an attenuated firing response for fast frequency inputs. We conclude that independent of network-level inhibition, GCs may intrinsically be capable of producing a "U"-shaped input frequency-PS relationship. GCs may preferentially decorrelate slow and fast inputs via spike timing reorganization and high frequency filtering.


Asunto(s)
Giro Dentado , Neuronas , Giro Dentado/fisiología , Neuronas/fisiología , Hipocampo/fisiología , Vía Perforante , Sinapsis/fisiología
8.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049972

RESUMEN

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Giro Dentado/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Hipocampo/metabolismo , Neuronas/fisiología , Canal de Potasio KCNQ2/genética
9.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200558

RESUMEN

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Recién Nacido , Femenino , Lactante , Animales , Humanos , Embarazo , Proteínas Hedgehog , Macaca mulatta , Escherichia coli , Recien Nacido Prematuro , Cerebelo , ARN Nuclear Pequeño
10.
Cerebellum ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499814

RESUMEN

In the cerebellum, granule cells make parallel fibre contact on (and excite) Golgi cells and Golgi cells inhibit granule cells, forming an open feedback loop. Parallel fibres excite Golgi cells synaptically, each making a single contact. Golgi cells inhibit granule cells in a structure called a glomerulus almost exclusively by GABA spillover acting through extrasynaptic GABAA receptors. Golgi cells are connected dendritically by gap junctions. It has long been suspected that feedback contributes to homeostatic regulation of parallel fibre signals activity, causing the fraction of the population that are active to be maintained at a low level. We present a detailed neurophysiological and computationally-rendered model of functionally grouped Golgi cells which can infer the density of parallel fibre signals activity and convert it into proportional modulation of inhibition of granule cells. The conversion is unlearned and not actively computed; rather, output is simply the computational effect of cell morphology and network architecture. Unexpectedly, the conversion becomes more precise at low density, suggesting that self-regulation is attracted to sparse code, because it is stable. A computational function of gap junctions may not be confined to the cerebellum.

11.
Cerebellum ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850484

RESUMEN

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

12.
BMC Neurol ; 24(1): 263, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075442

RESUMEN

BACKGROUND: John Cunningham virus related granule cell neuronopathy (JCV-GCN) is a rare manifestation of the reactivation of infection of the cerebellar granule cells by the JCV, mostly in immunocompromised individuals. The "hot cross bun" (HCB) sign is a cruciform hyperintensity seen in the midpons on T2-weighted and fluid attenuated inversion recovery (FLAIR) sequences on magnetic resonance imaging (MRI) of the brain. An index sub-Saharan Africa report of a case of JCV-GCN with HCB sign follows. CASE PRESENTATION: A 27-year-old HIV positive female with JCV-GCN was re-evaluated for chronic ataxia complicated by subacute progressive horizontal diplopia. Cerebrospinal fluid (CSF) had trace Mycobacterium tuberculosis (MTB) detected by GeneXpert Mycobacterium Tuberculosis/Rifampicin resistance (MTB/RIF) assay test. Brain MRI revealed diffuse severe cerebellar atrophy with a hot cross bun sign and patchy enhancement contiguous to the cerebellar dentate nuclei bilaterally. She continued Highly Active Antiretroviral Therapy (HAART) pending CSF HIV viral load counts and started standard brain TB local treatment regimen protocols with progressive improvement in limb ataxia. CONCLUSIONS: In conclusion, finding of the HCB sign may be indicative of and aid diagnosis of JCV-GCN in the right clinical context. This could be an important neuroimaging marker in this context, that may radiologically be more evident in later stages of the condition.


Asunto(s)
Infecciones por VIH , Virus JC , Humanos , Femenino , Adulto , Infecciones por VIH/complicaciones , Virus JC/aislamiento & purificación , Imagen por Resonancia Magnética/métodos , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Leucoencefalopatía Multifocal Progresiva/virología , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico
13.
Nutr Neurosci ; : 1-11, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367228

RESUMEN

OBJECTIVE: The cerebellum has a long, protracted developmental period; therefore, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is an essential nutrient in fetal and postnatal brain development, and its supplementation during pregnancy is widely recommended. This study aimed to describe the effects of maternal folate intake on postnatal cerebellum development. METHODS: Twelve adult female Rattus norwegicus (6-8 weeks old) rats were randomly assigned to one of four groups and given one of four premixed diets: a standard diet (2 mg/kg), a folate-deficient (folate 0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began consuming their specific diets 14 days before mating and were maintained on them throughout pregnancy and lactation. Five pups from each group were sacrificed, and their brains processed for light microscopic examination on postnatal days 1, 7, 21, and 35. The data gathered included the morphology of the cerebellar folia and an estimate of the volume of the cerebellar cortical layer using the Cavalieri method. RESULTS: Folia of the folate-supplemented and supra-supplemented groups were thicker and showed extensive branching with sub-lobule formation. The folate-deficient diet group's folia were smaller, had more inter-folial spaces, or fused. When compared to the folate-deficient group, the volumes of the cerebellum and individual cerebellar cortical layers were significantly larger in the folate-supplemented and supra-supplemented groups (p<0.05). CONCLUSION: Folate supplementation during pregnancy and lactation improves the degree and complexity of the cerebellar folia and the volumes of individual cerebellar cortical layers.

14.
Cell Mol Life Sci ; 80(8): 227, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490159

RESUMEN

The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.


Asunto(s)
Cerebelo , Pez Cebra , Animales , Encéfalo , Recuento de Células , Mamíferos
15.
J Neurosci ; 42(6): 1090-1103, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34980636

RESUMEN

Strong inhibitory synaptic gating of dentate gyrus granule cells (GCs), attributed largely to fast-spiking parvalbumin interneurons (PV-INs), is essential to maintain sparse network activity needed for dentate dependent behaviors. However, the contribution of PV-INs to basal and input-driven sustained synaptic inhibition in GCs and semilunar granule cells (SGCs), a sparse morphologically distinct dentate projection neuron subtype, is currently unknown. In studies conducted in hippocampal slices from mice, we find that although basal IPSCs are more frequent in SGCs and optical activation of PV-INs reliably elicited IPSCs in both GCs and SGCs, optical suppression of PV-INs failed to reduce IPSC frequency in either cell type. Amplitude and kinetics of IPSCs evoked by perforant path (PP) activation were not different between GCs and SGCs. However, the robust increase in sustained polysynaptic IPSCs elicited by paired afferent stimulation was lower in SGCs than in simultaneously recorded GCs. Optical suppression of PV-IN selectively reduced sustained IPSCs in SGCs but not in GCs. These results demonstrate that PV-INs, while contributing minimally to basal synaptic inhibition in both GCs and SGCs in slices, mediate sustained feedback inhibition selectively in SGCs. The temporally selective blunting of activity-driven sustained inhibitory gating of SGCs could support their preferential and persistent recruitment during behavioral tasks.SIGNIFICANCE STATEMENT Our study identifies that feedback inhibitory regulation of dentate semilunar granule cells (SGCs), a sparse and functionally distinct class of projection neurons, differs from that of the classical projection neurons, GCs. Notably, we demonstrate relatively lower activity-dependent increase in sustained feedback inhibitory synaptic inputs to SGCs when compared with GCs which would facilitate their persistent activity and preferential recruitment as part of memory ensembles. Since dentate GC activity levels during memory processing are heavily shaped by basal and feedback inhibition, the fundamental differences in basal and evoked sustained inhibition between SGCs and GCs characterized here provide a framework to reorganize current understanding of the dentate circuit processing.


Asunto(s)
Giro Dentado/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Animales , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Ratones , Parvalbúminas/metabolismo , Sinapsis/fisiología
16.
J Neurophysiol ; 129(1): 159-176, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416445

RESUMEN

The cerebellum is considered a "learning machine" essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellum's input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from time-varying inputs, typical during movements. The model robustly produced temporal basis sets from these inputs, and the resultant GCL output supported better learning of temporally complex target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels, supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense population activity optimizes learning.NEW & NOTEWORTHY During movement, mossy fiber inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model, we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which retained intrinsic input variance while also performing pattern separation.


Asunto(s)
Corteza Cerebelosa , Cerebelo , Neuronas , Aprendizaje , Células de Purkinje
17.
Neurobiol Dis ; 187: 106311, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769745

RESUMEN

Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.

18.
Cerebellum ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880519

RESUMEN

As an excitatory neuron in the cerebellum, the granule cells play a crucial role in motor learning. The assembly of NMDAR in these neurons varies in developmental stages, while the significance of this variety is still not clear. In this study, we found that motor training could specially upregulate the expression level of NR1a, a splicing form of NR1 subunit. Interestingly, overexpression of this splicing variant in a cerebellar granule cell-specific manner dramatically elevated the NMDAR binding activity. Furthermore, the NR1a transgenic mice did not only show an enhanced motor learning, but also exhibit a higher efficacy for motor training in motor learning. Our results suggested that as a "junior" receptor, NR1a facilitates NMDAR activity as well as motor skill learning.

19.
Nutr Neurosci ; : 1-17, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151886

RESUMEN

OBJECTIVE: Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIMS: This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD: Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS: The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.

20.
Microsc Microanal ; 29(5): 1730-1745, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37584515

RESUMEN

The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 µm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA