Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(4): e2304051, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37612793

RESUMEN

Quantum-dot light-emitting diodes (QD-LEDs) have gained attention as potential display technologies. However, the solvents used to dissolve a polymeric hole transport layer (HTL) are hazardous to both humans and the environment. Additionally, intermixing the HTL and QD layers presents a significant challenge when fabricating inverted QD-LEDs. Here, a green solvent selection procedure to achieve good device performance and environmental safety in QD-LEDs is established. This procedure utilizes Hansen solubility parameters and surface roughness to identify a set of solvents that do not lower the device performance by avoiding interlayer mixing or a rough interface. The CHEM21 solvent selection guide is used to screen for environmentally hazardous solvents. Finally, cyclopentanone (CPO) is selected as the optimal HTL solvent from among 16 candidates. Using CPO improves the maximum luminescence by ≈1.6 times and the maximum current efficiency by ≈12.6 times, compared to that of conventional devices using hazardous chlorobenzene. Solvent selection is critical for the fabrication of green and high-performance inverted QD-LEDs, particularly for large display panels that require n-type oxide thin-film transistors.

2.
Small ; 20(33): e2401080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38566553

RESUMEN

Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94‒98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.

3.
Chemistry ; : e202402214, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140423

RESUMEN

Herein, we report an efficient strategy towards the synthesis of amino acid substituted isoquinoline derivatives via reaction of unprotected amino acid/amino acid ester/amino acid based drugs with 2-(2-oxo-2-aryl/alkylethyl)benzonitrile under metal-free conditions. The developed protocol is highly simple and shows functional group tolerance to provide corresponding novel amino acid substituted isoquinolines in aqueous medium. The applicability of the reaction is an easier modification of well-known drugs and successfully extended to gram-scale synthesis.

4.
Anal Bioanal Chem ; 416(18): 4091-4099, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38748248

RESUMEN

In the present study, twin-column recycling chromatography has been employed for the purification of a Cannabis extract by using a green solvent, ethanol, as the mobile phase. In particular, the complete removal of the psychoactive tetrahydrocannabinol (THC) from a Cannabis extract rich in cannabidiol (CBD) was achieved under continuous conditions. The performance of the method, in terms of compound purity, recovery, productivity and solvent consumption, was compared to that of traditional batch operations showing the potential of the twin-column recycling approach. The employment of a theoretical model to predict the band profiles of the two compounds during the recycling process has facilitated method development, thus further contributing to process sustainability by avoiding trial and error attempts or at least decreasing the number of steps significantly.


Asunto(s)
Cannabinoides , Cannabis , Tecnología Química Verde , Solventes , Solventes/química , Cannabinoides/aislamiento & purificación , Cannabinoides/análisis , Cannabinoides/química , Tecnología Química Verde/métodos , Cannabis/química , Reciclaje , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cannabidiol/aislamiento & purificación , Cannabidiol/análisis , Dronabinol/aislamiento & purificación , Dronabinol/análisis , Cromatografía Líquida de Alta Presión/métodos
5.
Anal Bioanal Chem ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392506

RESUMEN

In recent years, green solvents have emerged as promising alternatives in the field of analytical chemistry, replacing conventional organic solvents known for their toxicity, volatility, and flammability. The combination of these solvents with liquid-liquid microextraction techniques has facilitated the development of simpler, faster, more economical, and environment-friendly methodologies for the analysis of samples of varying complexity. This review discusses the fundamental physicochemical properties and advantages of using deep eutectic solvents, ionic liquids, switchable-hydrophilicity solvents, supramolecular solvents, and surfactants as extractants. Furthermore, analytical methods based on liquid-liquid microextraction techniques developed in the last 5 years for the determination of organic compounds and metals in biological and environmental samples are presented and discussed, highlighting their applications and benefits to improve analytical performance and sustainability.

6.
Ecotoxicol Environ Saf ; 283: 116845, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116690

RESUMEN

Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.


Asunto(s)
Arabidopsis , Germinación , Imidazoles , Líquidos Iónicos , Óxido Nítrico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Imidazoles/toxicidad , Líquidos Iónicos/toxicidad , Germinación/efectos de los fármacos , Clorofila/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
7.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731478

RESUMEN

Microwave-assisted organic synthesis (MAOS) has emerged as a transformative technique in organic chemistry, significantly enhancing the speed, efficiency, and selectivity of chemical reactions. In our research, we have employed microwave irradiation to expedite the synthesis of quinazolinones, using water as an eco-friendly solvent and thereby adhering to the principles of green chemistry. Notably, the purification of the product was achieved without the need for column chromatography, thus streamlining the process. A key innovation in our approach is using aldehyde bisulfite adducts (Bertagnini's salts) as solid surrogates of aldehydes. Bertagnini's salts offer several advantages over free aldehydes, including enhanced stability, easier purification, and improved reactivity. Green metrics and Eco-Scale score calculations confirmed the sustainability of this approach, indicating a reduction in waste generation and enhanced sustainability outcomes. This methodology facilitates the synthesis of a diverse array of compounds, offering substantial contributions to the field, with potential for widespread applications in pharmaceutical research and beyond.

8.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731474

RESUMEN

Aligned with the EU Sustainable Development Goals 2030 (EU SDG2030), extensive research is dedicated to enhancing the sustainable use of biomass waste for the extraction of pharmaceutical and nutritional compounds, such as (poly-)phenolic compounds (PC). This study proposes an innovative one-step hydrothermal extraction (HTE) at a high temperature (120 °C), utilizing environmentally friendly acidic natural deep eutectic solvents (NADESs) to replace conventional harmful pre-treatment chemicals and organic solvents. Brewer's spent grain (BSG) and novel malt dust (MD) biomass sources, both obtained from beer production, were characterized and studied for their potential as PC sources. HTE, paired with mild acidic malic acid/choline chloride (MA) NADES, was compared against conventional (heated and stirred maceration) and modern (microwave-assisted extraction; MAE) state-of-the-art extraction methods. The quantification of key PC in BSG and MD using liquid chromatography (HPLC) indicated that the combination of elevated temperatures and acidic NADES could provide significant improvements in PC extraction yields ranging from 251% (MD-MAC-MA: 29.3 µg/g; MD-HTE-MA: 103 µg/g) to 381% (BSG-MAC-MA: 78 µg/g; BSG-HTE-MA: 375 µg/g). The superior extraction capacity of MA NADES over non-acidic NADES (glycerol/choline chloride) and a traditional organic solvent mixture (acetone/H2O) could be attributed to in situ acid-catalysed pre-treatment facilitating the release of bound PC from lignin-hemicellulose structures. Qualitative 13C-NMR and pyro-GC-MS analysis was used to verify lignin-hemicellulose breakdown during extraction and the impact of high-temperature MA NADES extraction on the lignin-hemicellulose structure. This in situ acid NADES-catalysed high-temperature pre-treatment during PC extraction offers a potential green pre-treatment for use in cascade valorisation strategies (e.g., lignin valorisation), enabling more intensive usage of available biomass waste stream resources.

9.
Molecules ; 29(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202802

RESUMEN

A base-induced synthesis of 2-(4-(2-(phenylthio)ethyl)piperazinyl) acetonitriles by reaction of disulfides, 1-(chloromethyl)-4-aza-1-azonia bicyclo[2.2.2]octane chloride and trimethylsilyl cyanide is reported. The scope of the method is demonstrated with 30 examples. The reaction mechanism research indicates that the three-component reaction would be a SN2 reaction. The products exhibit good activities towards advanced synthesis of aqueous soluble acyl-CoA: cholesterol O-acyltransferase-1 (ACAT-1) inhibitors. Our work is superior as it uses less-odor disulfides as carbon sources and EtOH as solvent in a water and dioxygen insensitive reaction system, followed by a simple purification process.

10.
Plant Foods Hum Nutr ; 79(1): 242-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329612

RESUMEN

This work employed supramolecular solvents (SUPRAS) made up of octanoic acid, ethanol, and acidified water (pH ~ 3) to extract and concentrate bioactive compounds from Eugenia pyriformis Cambess (uvaia) pulp. At first, the SUPRAS phase characterization demonstrated the spherical aggregates' formation with an internal hydrophobic structure and an external hydrophilic media. Subsequently, the simultaneous production and extraction (SUPRAS-SPE) method was employed in the solid-liquid extraction (SLE) of uvaia pulp. The extracts were evaluated through Folin-Ciocalteu reducing capacity, antioxidant activity (DPPH assay), total carotenoid content (TCC), and total flavonoid content (TFC). The results showed that reducing the ethanol concentration in the SUPRAS composition boosted the TCC extraction while increasing the ethanol presence, promoting a high TFC yield. Moreover, the SUPRAS-SPE method was compared with the ex situ method (SUPRAS-ES), where the solvent was previously produced and then applied to the SLE. Both methods were evaluated concerning their EE% and thermal degradation. The SUPRAS-SPE method increased the EE% of uvaia pulp bioactive compounds compared to the SUPRAS-SE method, providing a suitable microenvironment to extract, concentrate, and stabilize carotenoids from uvaia pulp, offering a sustainable alternative to obtain valuable compounds.


Asunto(s)
Eugenia , Solventes/química , Eugenia/química , Antioxidantes/química , Carotenoides , Etanol
11.
Angew Chem Int Ed Engl ; 63(41): e202409826, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39023384

RESUMEN

Solvents can significantly influence chemical reactions in condensed phases. Their critical properties are increasingly recognized in various research domains such as organic synthesis and biomass valorization. However, in semiconductor photocatalysis, solvents are primarily viewed as mediums for dissolving and diffusing substances, with their potential beneficial effects on photocatalytic conversions often overlooked. Additionally, common photocatalysis solvents like acetonitrile (ACN) pose serious safety and environmental concerns. In this study, we demonstrate that novel and safe green solvents, such as γ-valerolactone (GVL), can significantly enhance the performance of semiconductor photocatalysis for C-H bond activation. Non-specific solvent-solute interactions are the primary contributors to increased photocatalytic activity in the self-coupling of benzylic compounds. Specifically, GVL's large dielectric constant and high refractive index lower the energy barrier for the rate-determining C-H bond activation step, facilitating a faster coupling reaction. The versatility of GVL is further demonstrated in reactions with multiple reagents and in various oxidation and reduction photocatalytic systems beyond classic C-H bond activation. This work not only pioneers the use of green solvents but also provides comprehensive insights for proper solvent selection in semiconductor photocatalysis.

12.
Bioorg Med Chem Lett ; 90: 129346, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217024

RESUMEN

We present a general efficient green method for the preparation of nitro N,N'-diaryl thioureas via a one-pot method using cyrene as a solvent with almost quantitative yields. This confirmed the viability of cyrene as a green alternative to THF in the synthesis of thiourea derivatives. After screening different reducing conditions, the nitro N,N'-diaryl thioureas were selectively reduced using Zn dust in the presence of water and acid to the corresponding amino N,N'-diaryl thioureas. These were then used to test the installation of the Boc-protected guanidine group with N,N'-bis-Boc protected pyrazole-1-carboxamidine as a guanidylating reagent not requiring mercury(II) activation. Finally, the TFA salts obtained after Boc-deprotection of two sample compounds were tested for their affinity towards DNA showing no binding.


Asunto(s)
Guanidinas , Tiourea , Guanidina , Tiourea/química
13.
Bioprocess Biosyst Eng ; 46(10): 1499-1512, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37580470

RESUMEN

Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P < 0.05). The highest crude lipid yield of 25.05 ± 0.924% was achieved using ethanol-2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.


Asunto(s)
Chlorella , Microalgas , Humanos , Ácidos Grasos , Solventes , Etanol , Biomasa
14.
Molecules ; 28(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38138638

RESUMEN

With the proposal of replacing toxic solvents with non-toxic solvents in the concept of green chemistry, the development and utilization of new green extraction techniques have become a research hotspot. Phenolic compounds in edible oils have good antioxidant activity, but due to their low content and complex matrix, it is difficult to achieve a high extraction rate in a green and efficient way. This paper reviews the current research status of novel extraction materials in solid-phase extraction, including carbon nanotubes, graphene and metal-organic frameworks, as well as the application of green chemical materials in liquid-phase extraction, including deep eutectic solvents, ionic liquids, supercritical fluids and supramolecular solvents. The aim is to provide a more specific reference for realizing the green and efficient extraction of polyphenolic compounds from edible oils, as well as another possibility for the future research trend of green extraction technology.

15.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570676

RESUMEN

A sustainable enzymatic strategy for the preparation of amides by using Candida antarctica lipase B as the biocatalyst and cyclopentyl methyl ether as a green and safe solvent was devised. The method is simple and efficient and it produces amides with excellent conversions and yields without the need for intensive purification steps. The scope of the reaction was extended to the preparation of 28 diverse amides using four different free carboxylic acids and seven primary and secondary amines, including cyclic amines. This enzymatic methodology has the potential to become a green and industrially reliable process for direct amide synthesis.

16.
Molecules ; 28(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005377

RESUMEN

This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.

17.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771071

RESUMEN

Tobacco cultivation and industrialization are characterized by the production of trillions of pre-harvest and post-harvest waste biomasses each year with the resulting negative effects on the environment. The leaves of blunt, pre-harvest waste, could be further used to obtain bioactive metabolites, i.e., polyphenols and alkaloids, for its potential cosmetic use. This study was conducted to obtain bio-compounds from pre-harvest tobacco leaf waste (var. Virginia) by applying conventional and green solvents (NaDES). Leaves and ground leaf waste were characterized based on their microscopic features. Conventional solvents, such as water, acetone, ethanol, and non-conventional solvents, such as Natural Deep Eutectic Solvents (NaDES), i.e., sucrose:lactic acid (LAS), frutose:glucose:sucrose (FGS), lactic acid:sucrose:water (SALA), choline chloride:urea (CU), and citric acid: propylene glycol (CAP) were used for bioactive extraction from tobacco waste powder. CU, FGS, and acetone/ethanol had similar behavior for the best extraction of alkaloids (6.37-11.23 mg ACE/g tobacco powder). LAS, FGS, SALA, and CU were more effective in phenolic compound extraction than conventional solvents (18.13-21.98 mg AGE/g tobacco powder). Because of this, LAS and SALA could be used to obtain phenolic-enriched extracts with lower alkaloid content rather than CU and FGS. Extracts of the powder obtained with conventional solvent or CU showed a high level of sugars (47 mg/g tobacco powder) The ABTS antioxidant capacity of tobacco leaf powder was higher in the extracts obtained with CU, FGS, and acetone (SC50 1.6-5 µg GAE/mL) while H2O2 scavenging activity was better in the extracts obtained with LAS, CAP and SALA (SC50 3.8-8.7 µg GAE/mL). Due to the biocompatibility of the NaDES with the components of tobacco leaf waste, the opportunity to apply these extracts directly in antioxidant formulations, such as cosmetics, phytotherapic, and other formulations of topic use seems promising. Furthermore, NaDES constituents, i.e., urea and organic acid can also have beneficial effects on the skin.


Asunto(s)
Alcaloides , Nicotiana , Acetona , Antioxidantes/análisis , Disolventes Eutécticos Profundos , Etanol , Peróxido de Hidrógeno , Fenoles , Extractos Vegetales/análisis , Hojas de la Planta/química , Polvos , Propilenglicol , Solventes/análisis , Nicotiana/química , Agua
18.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771177

RESUMEN

The previous biodiesel purification by Solvent-Aided Crystallization (SAC) using 1-butanol as assisting agent and parameters for SAC were optimized such as coolant temperature, cooling time and stirring speed. Meanwhile, 2-Methyltetrahydrofuran (2-MeTHF) was selected as an alternative to previous organic solvents for this study. In this context, it is used to replace solvent 1-butanol from a conducted previous study. This study also focuses on the technological improvements in the purification of biodiesel via SAC as well as to produce an even higher purity of biodiesel. Experimental works on the transesterification process to produce crude biodiesel were performed and SAC was carried out to purify the crude biodiesel. The crude biodiesel content was analyzed by using Gas Chromatography-Mass Spectrometry (GC-MS) and Differential Scanning Calorimetry (DSC) to measure the composition of Fatty Acid Methyl Esters (FAME) present. The optimum value to yield the highest purity of FAME for parameters coolant temperature, cooling time, and stirring speed is -4 °C, 10 min and 210 rpm, respectively. It can be concluded that the assisting solvent 2-MeTHF has a significant effect on the process parameters to produce purified biodiesel according to the standard requirement.

19.
Saudi Pharm J ; 31(6): 874-888, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37234341

RESUMEN

Phaleria macrocarpa (Scheff.) Boerl. is geographically distributed around Papua Island, Indonesia. Traditionally, P. macrocarpa is exercised to reduce pain, stomachache, diarrhea, tumor problems, blood glucose, cholesterol, and blood pressure. A growing interest in the medicinal values of P. macrocarpa especially in Asia reflects the usage of diverse extraction techniques, particularly modern approaches. In this review article, the extraction methods and solvents relevant to P. macrocarpa were discussed, with the extent of its pharmacological activities. Recent bibliographic databases such as Google Scholar, PubMed, and Elsevier between 2010 and 2022 were assessed. Based on the findings, the pharmacological studies of P. macrocarpa are still pertinent to its traditional uses but primarily emphasise anti-proliferative activity especially colon and breast cancer cells with low toxicity and fruit as the most studied plant part. The utilization of modern separation techniques has predominantly been aimed at extracting mangiferin and phenolic-rich compounds and evaluating their antioxidant capacity. However, the isolation of bioactive compounds remains a challenge, leading to the extensive utilization of the extracts in in vivo studies. This review endeavors to highlight modern extraction methods that could potentially be used as a point of reference in the future for exploring novel bioactive compounds and drug discovery on a multi-scale extraction level.

20.
Angew Chem Int Ed Engl ; 62(46): e202312231, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37750462

RESUMEN

The use of dopant-free hole transport layers (HTLs) is critical in stabilizing n-i-p perovskite solar cells (pero-SCs). However, these HTL materials are often processed with toxic solvents, which is not ideal for industrial production. Upon substituting them with green solvents, a trade-off emerges between maintaining the high crystallinity of the HTL materials and ensuring high solubility in the new solvents. In this paper, we designed a novel, linear, organic small molecule, BDT-C8-3O, by introducing an asymmetric polar oligo(ethylene glycol) side chain. This method not only overcomes the solubility limitations in green solvents but also enables stacking the conjugated main chains in two patterns, which further enhances crystallinity and hole mobility. As a result, the n-i-p pero-SCs based on chlorobenzene- or green (natural compound) solvent 3-methylcyclohexanone-processed BDT-C8-3O HTL that without any dopant delivered world-recorded power conversion efficiencies of 24.11 % (certified of 23.82 %) and 23.53 %, respectively. The devices also demonstrated remarkable operational and high-temperature stabilities, maintaining over 84 % and 79.5 % of their initial efficiency for 2000 h, respectively. Encouragingly, dopant-free BDT-C8-3O HTL exhibits significant advantages in large-area fabrication, achieving state-of-the-art PCEs exceeding 20 % for 5×5 cm2 modules (active area: 15.64 cm2 ), even when processed using green solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA