Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 34(5): 572-583, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38390772

RESUMEN

Irinotecan-induced severe diarrhea (IISD) not only limits irinotecan's application but also significantly affects patients' quality of life. However, existing animal models often inadequately represent the dynamics of IISD development, progression, and resolution across multiple chemotherapy cycles, yielding non-reproducible and highly variable response with limited clinical translation. Our studies aim to establish a reproducible and validated IISD model that better mimics the pathophysiology progression observed in patients, enhancing translational potential. We investigated the impact of dosing regimens (including different dose, infusion time, and two cycles of irinotecan administration), sex, age, tumor-bearing conditions, and irinotecan formulation on the IISD incidence and severity in mice and rats. Lastly, we investigated above factors' impact on pharmacokinetics of irinotecan, intestinal injury, and carboxylesterase activities. In summary, we successfully established a standard model establishment procedure for an optimized IISD model with highly reproducible severe diarrhea incidence rate (100%) and a low mortality rate (11%) in F344 rats. Additionally, the rats tolerated at least two cycles of irinotecan chemotherapy treatment. In contrast, the mouse model exhibited suboptimal IISD incidence rates (60%) and an extremely high mortality rate (100%). Notably, dosing regimen, age and tumor-bearing conditions of animals emerged as critical factors in IISD model establishment. In conclusion, our rat IISD model proves superior in mimicking pathophysiology progression and characteristics of IISD in patients, which stands as an effective tool for mechanism and efficacy studies in future chemotherapy-induced gut toxicity research.


Asunto(s)
Diarrea , Modelos Animales de Enfermedad , Irinotecán , Ratas Endogámicas F344 , Irinotecán/toxicidad , Animales , Diarrea/inducido químicamente , Masculino , Femenino , Ratones , Ratas , Índice de Severidad de la Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Reproducibilidad de los Resultados
2.
Environ Sci Technol ; 57(31): 11442-11451, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490655

RESUMEN

Chlorinated paraffins (CPs) have become global pollutants and are of considerable concern as a result of their persistence and long-distance transmission in the environment and toxicity to mammals. However, their risks to pollinating insects are unknown. Honeybees are classical pollinators and sensitive indicators of environmental pollution. Herein, the effects of CPs on the gut microenvironment and underlying mechanisms were evaluated and explored using Apis mellifera L. Both short- and medium-chain CPs had significant sublethal effects on honeybees at a residue dose of 10 mg/L detected in bee products but did not significantly alter the composition or diversity of the gut microbiota. However, this concentration did induce significant immune, detoxification, and antioxidation responses and metabolic imbalances in the midgut. The mechanisms of CP toxicity in bees are complicated by the complex composition of these chemicals, but this study indicated that CPs could substantially affect intestinal physiology and metabolic homeostasis. Therefore, CPs in the environment could have long-lasting impacts on bee health. Future studies are encouraged to identify novel bioindicators of CP exposure to detect early contamination and uncover the detailed mechanisms underlying the adverse effects of CPs on living organisms, especially pollinating insects.


Asunto(s)
Abejas , Contaminantes Ambientales , Microbioma Gastrointestinal , Hidrocarburos Clorados , Parafina , Animales , Abejas/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Hidrocarburos Clorados/toxicidad , Parafina/toxicidad , Estrés Fisiológico , Contaminantes Ambientales/toxicidad
3.
Drug Chem Toxicol ; 45(6): 2399-2410, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34334065

RESUMEN

The interaction between neuroendocrine and immune components of the gut maintains the organism's physical and psychological health. Its disruption may reflect in disease conditions such as inflammatory bowel disease (IBD) and mental illness. The lipopolysaccharide (LPS) disrupts the endocrine-immune homeostasis resulting in gut toxicity. The Neurotensin receptor-1 (NTR-1) agonist PD 149163 (PD) acts as an atypical antipsychotic drug in psychiatric illness, but its role in modulating gut pathophysiology remains unknown. Therefore, the aim of the present study was to evaluate the protective effect of PD against LPS-induced gut toxicity. Swiss albino female mice (12 weeks) were divided into six groups (n = 6/group): (I) Control, (II) LPS (1 mg/kg, for 5 days), (III) LPS (1 mg/kg, for 5 days)+PD low (100 µg/kg, for 21 days), (IV) LPS (1 mg/kg, for 5 days)+PD high (300 µg/kg, for 21 days), (V) PD low (100 µg/kg, for 21 days), and (VI) PD high (300 µg/kg, for 21 days). Drugs were given intraperitoneal in the morning. PD administration prevented the LPS-induced gut inflammation observed in damage of epithelial barrier, disruption of goblet cells, and condensation of lamina propria (LP). The LPS-induced oxidative stress characterized by decreased superoxide dismutase (SOD) activity and increased lipid hydroperoxide (LOOH) (p < 0.001 for both), and enhanced interleukine-6 (IL-6) & tumor necrosis factor-α (TNF-α) (p < 0.001 for both) as well as immunointensity of NT (p < 0.01) and NTR-1 (p < 0.05) were reversed and normalized to control after PD treatment. Thus, the anti-inflammatory, anti-oxidative, and cell proliferation properties of PD modulate the gut toxicity in LPS-challenged mice.


Asunto(s)
Antipsicóticos , Neurotensina , Receptores de Neurotensina , Animales , Ratones , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Interleucina-6 , Peróxidos Lipídicos , Lipopolisacáridos/toxicidad , Receptores de Neurotensina/agonistas , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa , Neurotensina/análogos & derivados , Neurotensina/farmacología
4.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628140

RESUMEN

Gastrointestinal toxicity (GIT) is a debilitating side effect of Irinotecan (CPT-11) and limits its clinical utility. Gut dysbiosis has been shown to mediate this side effect of CPT-11 by increasing gut bacterial ß-glucuronidase (GUSB) activity and impairing the intestinal mucosal barrier (IMB). We have recently shown the opposing effects of omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) on the gut microbiome. We hypothesized that elevated levels of tissue n-3 PUFA with a decreased n-6/n-3 PUFA ratio would reduce CPT-11-induced GIT and associated changes in the gut microbiome. Using a unique transgenic mouse (FAT-1) model combined with dietary supplementation experiments, we demonstrate that an elevated tissue n-3 PUFA status with a decreased n-6/n-3 PUFA ratio significantly reduces CPT-11-induced weight loss, bloody diarrhea, gut pathological changes, and mortality. Gut microbiome analysis by 16S rRNA gene sequencing and QIIME2 revealed that improvements in GIT were associated with the reduction in the CPT-11-induced increase in both GUSB-producing bacteria (e.g., Enterobacteriaceae) and GUSB enzyme activity, decrease in IMB-maintaining bacteria (e.g., Bifidobacterium), IMB dysfunction and systemic endotoxemia. These results uncover a host-microbiome interaction approach to the management of drug-induced gut toxicity. The prevention of CPT-11-induced gut microbiome changes by decreasing the tissue n-6/n-3 PUFA ratio could be a novel strategy to prevent chemotherapy-induced GIT.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ácidos Grasos Omega-3 , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Animales , Antineoplásicos/farmacología , Bacterias/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-6/farmacología , Enfermedades Gastrointestinales/tratamiento farmacológico , Irinotecán/farmacología , Ratones , ARN Ribosómico 16S/genética
5.
Int J Cancer ; 139(12): 2635-2645, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27367824

RESUMEN

Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.


Asunto(s)
Antineoplásicos/efectos adversos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/etiología , Citocinas/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/diagnóstico , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neuroimagen/métodos , Fenotipo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
6.
Support Care Cancer ; 24(5): 2251-2258, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26581898

RESUMEN

PURPOSE: Chemotherapy-induced gut toxicity is associated with significant pain, and pain influences gut function. Toll-like receptors (TLRs) that regulate gut homeostasis are activated by tissue damage and microbes, and their altered expression following chemotherapy may change cellular responses. This study examined the interaction between chemotherapy-induced gut toxicity and pain and related these to gut TLR and glial fibrillary acidic protein (GFAP) expression. METHODS: Female tumor bearing Dark Agouti rats received irinotecan (175 mg/kg, n = 34) or vehicle (n = 5) and were assessed over 120 h for gut toxicity (diarrhea, weight loss), pain (facial), and GFAP, TLR2, 4, 5, and 9 gut expression. RESULTS: Irinotecan caused diarrhea (72 % of animals grade ≥ 1), weight loss (11.1 ± 6.6 %, P < 0.0001), and pain (5 (0-5), P < 0.0001) all peaking at 72 h. Higher pain scores were observed in rats with diarrhea versus those without: median (range) of 2.0 (0-5) versus 0 (0-5), P = 0.01. Irinotecan also caused a decrease in TLR4 and 5, and an increase in GFAP expression in jejuna crypt at 96 and 120 h (all P < 0.05); with lower TLR4 expression associated with lower pain (P = 0.012). CONCLUSIONS: The association between gut toxicity and pain suggests these toxicities are linked, possibly via TLR-mediated inflammatory pathways. Further, as TLR4 and 5 expression was absent during recovery in the jejuna and GFAP expression was increased in the jejuna, this implies expression of these may be critical in the healing phase following chemotherapy. Detailed studies of gut TLRs and GFAP are now warranted.


Asunto(s)
Proteína de Señalización Agouti/metabolismo , Enfermedades Gastrointestinales/inducido químicamente , Receptores Toll-Like/metabolismo , Animales , Femenino , Ratas
7.
Curr Oncol Rep ; 17(11): 50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26384312

RESUMEN

Chemotherapy-induced mucositis is a common condition caused by the breakdown of the mucosal barrier. Symptoms can include pain, vomiting and diarrhoea, which can often necessitate chemotherapy treatment breaks or dose reductions, thus compromising survival outcomes. Despite the significant impact of mucositis, there are currently limited clinically effective pharmacological therapies for the pathology. New emerging areas of research have been proposed to play key roles in the development of mucositis, providing rationale for potential new therapeutics for the prevention, treatment or management of chemotherapy-induced mucositis. This review aims to address these new areas of research and to comment on the therapeutics arising from them.


Asunto(s)
Antineoplásicos/efectos adversos , Tracto Gastrointestinal/patología , Mucosa Intestinal/patología , Mucositis/terapia , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Combinación de Medicamentos , Factor 7 de Crecimiento de Fibroblastos/uso terapéutico , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Ácido Hialurónico/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Mucositis/inducido químicamente , Povidona/uso terapéutico , Guías de Práctica Clínica como Asunto , Probióticos/uso terapéutico , Trombospondinas/uso terapéutico , Sulfato de Zinc/uso terapéutico
8.
Artículo en Inglés | MEDLINE | ID: mdl-39002022

RESUMEN

PURPOSE: Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS: The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION: Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.

9.
Environ Int ; 185: 108483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382402

RESUMEN

Biodegradable plastic, a widely used ecofriendly alternative to conventional plastic, easily form nanoplastics (NPs) upon environmental weathering. However, the effects and underlying mechanisms governing the toxicity of photoaged biodegradable NPs to aquatic insects are not understood. In this study, we investigated the photoaging of polylactic acid nanoplastics (PLA-NPs, a typical biodegradable plastic) that were placed under xenon arc lamp for 50 days and 100 days and compared the toxicity of virgin and photoaged PLA-NPs to Chironomus kiinensis (a dominant aquatic insect). The results showed that photoaged PLA-NPs significantly decreased the body weight, body length and emergence rate of C. kiinensis. Additionally, photoaged PLA-NPs induced more severe gut oxidative stress, histological damage, and inflammatory responses than virgin PLA-NPs. Furthermore, the alpha diversity of gut microbiota was lower in photoaged PLA-NPs group than virgin PLA-NPs. The relative abundance of key gut bacteria related to intestinal barrier defense, immunity, and nutrient absorption was reduced more significantly in photoaged PLA-NPs group than virgin PLA, indirectly leading to stronger gut damage and growth reduction. A stronger impact of photoaged PLA-NPs on the gut and its microbiota occurred because photoaging reduced the size of NPs from 255.5 nm (virgin PLA) to 217.1 nm (PLA-50) and 182.5 nm (PLA-100), induced surface oxidation and enhancement of oxidative potential, and improved the stability of NPs, thereby exacerbating toxicity on the gut and its microbiota. This study provides insights into the effects of biodegradable NPs on aquatic insects and highlights the importance of considering biodegradable nanoplastic aging in risk assessments.


Asunto(s)
Plásticos Biodegradables , Chironomidae , Microbioma Gastrointestinal , Envejecimiento de la Piel , Contaminantes Químicos del Agua , Animales , Microplásticos , Insectos , Poliésteres/toxicidad , Plásticos , Contaminantes Químicos del Agua/toxicidad
10.
ACS Nano ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323841

RESUMEN

Persistent organic pollutants (POPs) have been widely suggested as contributors to the aquatic insect biomass decline, and their bioavailability is affected by engineered particles. However, the toxicity effects of emerging ionizable POPs mediated by differentially charged engineered nanoparticles on aquatic insects are unknown. In this study, 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B, an emerging perfluoroalkyl acid alternative) was selected as a model emerging ionizable POP; the effect of differentially charged nanoplastics (NPs, 50 nm, 0.5 g/kg) on F-53B bioaccumulation and gut toxicity to Chironomus kiinensis were investigated through histopathology, biochemical index, and gut microbiota analysis. The results showed that when the dissolved concentration of F-53B remained constant, the presence of NPs enhanced the adverse effects on larval growth, emergence, gut oxidative stress and inflammation induced by F-53B, and the enhancement caused by positively charged NP-associated F-53B was stronger than that caused by the negatively charged one. This was mainly because positively charged NPs, due to their greater adsorption capacity and higher bioavailable fraction of associated F-53B, increased the bioaccumulation of F-53B in larvae more significantly than negatively charged NPs. In addition, positively charged NPs interact more easily with gut biomembranes and microbes with a negative charge, further increasing the probability of F-53B interacting with gut biomembranes and microbiota and thereby aggravating gut damage and key microbial dysbacteriosis related to gut health. These findings demonstrate that the surface charge of NPs can regulate the bioaccumulation and toxicity of ionizable POPs to aquatic insects.

11.
Sci Total Environ ; 866: 161261, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36587682

RESUMEN

Perfluorobutanesulfonate (PFBS), an alternative to perfluorooctanesulfonate (PFOS), has raised many health concerns. However, PFBS toxicity in the mammalian gut remains unclear. C57BL/6 mice were exposed to 10 µg/L and 500 µg/L PFBS or 500 µg/L PFOS in their water supply for 28 days. PFBS toxicity in the ileum and colon was explored and compared to that of PFOS. Biochemical analysis showed that tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels increased in the ileum exposed to 10 µg/L PFBS, whereas no significant changes were observed in those levels in the colon. Catalase (CAT) activity, malondialdehyde (MDA), TNF-α, and IL-1ß levels increased and glutathione (GSH) levels decreased in the ileum of the 500 µg/L-PFBS group, whereas only MDA levels increased in the colon of the 500 µg/L-PFBS group. The results showed that more severe damage occurred in the ileum than in the colon after PFBS exposure, and these align with the 500 µg/L-PFOS group exposure as well. Furthermore, metabolomic analysis revealed glutathione metabolism as a vital factor in inducing PFBS and PFOS toxicities in the ileum. Steroid hormone and amino acid metabolisms were other important factors involved in PFBS and PFOS toxicities, respectively. In the colon, GSH, pyrimidine, and glucose (especially galactose) metabolism was the main contributor to PFBS toxicity, and sulfur amino acid metabolism was the main pathway for PFOS toxicity. This study provides more evidence of the health hazards due to low-dose PFBS exposure in the mammalian gut.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ratones , Animales , Factor de Necrosis Tumoral alfa , Ratones Endogámicos C57BL , Ácidos Sulfónicos , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Fluorocarburos/química , Mamíferos
12.
Biomedicines ; 10(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35327411

RESUMEN

Immune checkpoint inhibitors herald a new era in oncological therapy-resistant cancer, thus bringing hope for better outcomes and quality of life for patients. However, as with other medications, they are not without serious side effects over time. Despite this, their advantages outweigh their disadvantages. Understanding the adverse effects will help therapists locate, apprehend, treat, and perhaps diminish them. The major ones are termed immune-related adverse events (irAEs), representing their auto-immunogenic capacity. This narrative review concentrates on the immune checkpoint inhibitors induced celiac disease (CD), highlighting the importance of the costimulatory inhibitors in CD evolvement and suggesting several mechanisms for CD induction. Unraveling those cross-talks and pathways might reveal some new therapeutic strategies.

13.
Cancer Chemother Pharmacol ; 88(2): 173-188, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33877390

RESUMEN

PURPOSE: Conditioning therapy with high-dose melphalan (HDM) is associated with a high risk of gut toxicity, fever and infections in haematopoietic stem cell transplant (HSCT) recipients. However, validated preclinical models that adequately reflect clinical features of melphalan-induced toxicity are not available. We therefore aimed to develop a novel preclinical model of melphalan-induced toxicity that reflected well-defined clinical dynamics, as well as to identify targetable mechanisms that drive intestinal injury. METHODS: Male Wistar rats were treated with 4-8 mg/kg melphalan intravenously. The primary endpoint was plasma citrulline. Secondary endpoints included survival, weight loss, diarrhea, food/water intake, histopathology, body temperature, microbiota composition (16S sequencing) and bacterial translocation. RESULTS: Melphalan 5 mg/kg caused self-limiting intestinal injury, severe neutropenia and fever while impairing the microbial metabolome, prompting expansion of enteric pathogens. Intestinal inflammation was characterized by infiltration of polymorphic nuclear cells in the acute phases of mucosal injury, driving derangement of intestinal architecture. Ileal atrophy prevented bile acid reabsorption, exacerbating colonic injury via microbiota-dependent mechanisms. CONCLUSION: We developed a novel translational model of melphalan-induced toxicity, which has excellent homology with the well-known clinical features of HDM transplantation. Application of this model will accelerate fundamental and translational study of melphalan-induced toxicity, with the clinical parallels of this model ensuring a greater likelihood of clinical success.


Asunto(s)
Fiebre/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Intestinales/inducido químicamente , Melfalán/efectos adversos , Microbiota/efectos de los fármacos , Animales , Traslocación Bacteriana , Ácidos y Sales Biliares/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Inflamación/inducido químicamente , Masculino , Neutropenia/inducido químicamente , Ratas , Ratas Wistar , Acondicionamiento Pretrasplante/métodos , Trasplante Autólogo/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-33418081

RESUMEN

Neonicotinoid insecticide imidacloprid (IMI) is widely used in agriculture, and its repeated application may result in environmental pollution. Recently, the toxicity of IMI to non-target animals has received increasing attention. In the current study, adult zebrafish were exposed to low concentrations of IMI (100 and 1000 µg/L) for 21 days. The results showed that IMI exposure induced intestinal histological injury and oxidative stress in the gut of zebrafish, and the levels of superoxide dismutase (SOD), catalase (CAT) were noticeably increased. Furthermore, IMI exposure also resulted in higher intestinal LPS levels and significant increases in the expression of inflammatory factors. Simultaneously, IMI exposure also slightly induced gut microbiota dysbiosis and specific bacteria alterations. These findings indicated that low concentrations of IMI could induce gut toxicity in adult zebrafish, which could provide new insights into the potential risks of IMI to aquatic animals.


Asunto(s)
Tracto Gastrointestinal/efectos de los fármacos , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Animales , Inflamación/inducido químicamente , Enfermedades Intestinales/inducido químicamente , Masculino , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
15.
J Ethnopharmacol ; 276: 114200, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33989737

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine suggests the use of natural extracts and compounds is a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity and resulting diarrhea. Previous work from our lab indicated the protective effect of Gegen Qinlian decoction; given this, we further speculated that Gegen Qinlian Pill (GQP) would exhibit similar therapeutic effects. The effective material basis as well as potential mechanisms underlying the effect of GQP for the treatment of CPT-11-induced diarrhea have not been fully elucidated. AIM OF THE STUDY: The application of natural extracts or compounds derived from Chinese medicine is deemed to a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity. The aim of this study was to investigated the beneficial effects of GQP on CPT-11-induced gut toxicity and further explored its anti-diarrheal mechanism. METHODS: First, the beneficial effect of GQP in alleviating diarrhea in mice following CPT-11 administration was investigated. We also obtained the effective ingredients in GQP from murine serum samples using HPLC-Q-TOF-MS analysis. Based on these active components, we next established an interaction network linking "compound-target-pathway". Finally, a predicted mechanism of action was obtained using in vivo GQP validation based on Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: A total of 19, GQP-derived chemical compounds were identified in murine serum samples. An interaction network linking "compound-target-pathway" was then established to illuminate the interaction between the components present in serum and their targets that mitigated diarrhea. These results indicated GQP exerted a curative effect on diarrhea and diarrhea-related diseases through different targets, which cumulatively regulated inflammation, oxidative stress, and proliferation processes. CONCLUSION: Taken together, this study provides a feasible strategy to elucidate the effective constituents in traditional Chinese medicine formulations. More specifically, this work detailed the basic pharmacological effects and underlying mechanism behind GQP's effects in the treatment of CPT-11-induced gut toxicity.


Asunto(s)
Diarrea/prevención & control , Medicamentos Herbarios Chinos/farmacología , Sustancias Protectoras/farmacología , Animales , Peso Corporal/efectos de los fármacos , Diarrea/sangre , Diarrea/inducido químicamente , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedades Gastrointestinales/sangre , Enfermedades Gastrointestinales/inducido químicamente , Enfermedades Gastrointestinales/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Irinotecán/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/química , Sustancias Protectoras/metabolismo , Sustancias Protectoras/uso terapéutico , Comprimidos
16.
Sci Total Environ ; 754: 142324, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254900

RESUMEN

Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 µg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 µg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.


Asunto(s)
Nanopartículas del Metal , Plata , Células CACO-2 , Supervivencia Celular , Humanos , Nanopartículas del Metal/toxicidad , Plata/toxicidad
17.
Biomed Pharmacother ; 109: 2252-2261, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551482

RESUMEN

BACKGROUND: Gegen Qinlian decoction (GQT), is a classic traditional Chinese medicine formula chronicled in Shang Han Lun, and is widely used to treat diarrhea and inflammation symptoms in various gastrointestinal disorders. Although it has been found to inhibit delayed-onset mice diarrhea resulted from irinotecan (CPT-11) administration in preliminary experiments, the underlying mechanisms and chemical components remain elusive. METHODS: The effective fraction of GQT by macroporous resin elution was obtained and screened using a diarrhea mouse model induced by CPT-11 and quantified by UPLC analysis. The protective effect of GQT extract towards alleviating diarrhea in mice following CPT-11 administration was further investigated. The levels of inflammatory cytokines and intestinal tight junction related proteins in colonic tissues were determined. The inhibitory effect of GQT extract against hCE2 was evaluated by a fluorescence-based method. Lastly, the synergistic effect of GQT extract combined with CPT-11 against tumor growth in a colorectal tumor mouse model, induced by HT-29 colon cancer cells xenograft subcutaneously, was investigated. RESULTS: The obtained GQT extract, which profoundly ameliorated the gut toxicity induced by CPT-11, contained puerarin, liquiritin, berberine, and baicalin of 27.2 mg/g, 4.6 mg/g, 491.4 mg/g, and 304.2 mg/g, respectively. After 5 days of administration of GQT extract to mice with diarrhea induced by CPT-11, aberrantly elevated levels of pro-inflammatory cytokines, including IL-1ß, COX-2, ICAM-1, and TNF-α, were significantly decreased. Meanwhile, GQT extract also exhibited a remarkable anti-oxidative stress effect, involving activating the Keap1/Nrf2 pathway, and up-regulating the intestinal barrier function by enhancing the expression of tight junction proteins ZO-1, HO-1, and occludin. Additionally, a potent inhibitory effect of GQT extract against hCE2 was observedin vitro, with its IC50 value of 0.187 mg/ml, suggesting alleviating activity on hCE2-mediated severe diarrhea in patients suffered from CPT-11. Moreover, GQT extract was shown to improve inhibition of the colonic tumor growth synergistically with CPT-11. CONCLUSION: The present study indicates that GQT extract can ameliorate CPT-11 induced gut toxicity in mice and improve CPT-11 efficacy in colorectal cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Irinotecán/toxicidad , Animales , Diarrea/patología , Medicamentos Herbarios Chinos/farmacología , Femenino , Células HT29 , Humanos , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
18.
Radiother Oncol ; 141: 247-255, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31431383

RESUMEN

BACKGROUND AND PURPOSE: Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS: To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS: The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION: The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.


Asunto(s)
Adenocarcinoma/radioterapia , Neoplasias Esofágicas/radioterapia , Nitroimidazoles/farmacología , Mostazas de Fosforamida/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Nitroimidazoles/efectos adversos , Mostazas de Fosforamida/efectos adversos
19.
Front Behav Neurosci ; 12: 104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872383

RESUMEN

The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

20.
Cancer Chemother Pharmacol ; 79(2): 431-434, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28011980

RESUMEN

PURPOSE: Irinotecan-induced gut toxicity is mediated in part by Toll-Like receptor 4 (TLR4) signalling. The primary purpose of this preclinical study was to determine whether blocking TLR4 signalling by administering (-)-naloxone, a TLR4 antagonist, would improve irinotecan-induced gut toxicity. Our secondary aim was to determine the impact of (-)-naloxone on tumour growth. METHODS: Female Dark Agouti (DA) tumour-bearing rats were randomly assigned to four treatments (n = 6 in each); control, (-)-naloxone (100 mg/kg oral gavage at -2, 24, 48, and 72 h), irinotecan (175 mg/kg intraperitoneal at 0 h), and (-)-naloxone and irinotecan. Body weight and tumour growth were measured daily, and diarrhoea incidence and severity were recorded 4× per day up to 72 h post-treatment. RESULTS: At 72 h, all rats that received irinotecan lost weight compared to controls (p = 0.03). In addition, rats that received (-)-naloxone and irinotecan lost significantly more weight compared to controls (p < 0.005) than irinotecan only compared to controls (p = 0.001). (-)-Naloxone did not attenuate irinotecan-induced severe diarrhoea at 48 and 72 h. Finally, (-)-naloxone caused increased tumour growth compared to control at 72 h (p < 0.05) and significantly reduced the efficacy of irinotecan (p = 0.001). CONCLUSIONS: (-)-Naloxone in our preclinical model was unable to block irinotecan-induced gut toxicity and decreased the efficacy of irinotecan. As (-)-naloxone-oxycodone combination is used for cancer pain, this may present a potential safety concern for patients receiving (-)-naloxone-oxycodone and irinotecan concurrently and requires further investigation.


Asunto(s)
Camptotecina/análogos & derivados , Naloxona/toxicidad , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Camptotecina/toxicidad , Dolor en Cáncer/tratamiento farmacológico , Diarrea/inducido químicamente , Diarrea/prevención & control , Femenino , Irinotecán , Naloxona/farmacología , Ratas , Receptor Toll-Like 4/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA