Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834762

RESUMEN

Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.


Asunto(s)
Neuralgia , Canales de Potencial de Receptor Transitorio , Ratas , Masculino , Femenino , Humanos , Animales , Neuralgia/metabolismo , Umbral del Dolor , Analgésicos/farmacología , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico
2.
Proc Natl Acad Sci U S A ; 116(30): 15236-15243, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285329

RESUMEN

Dopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis. By analyzing female mice carrying targeted mutations in the Trpc5 gene including a conditional Trpc5 deletion, we show that Trpc5 is required for maintaining highly stereotyped infraslow membrane potential oscillations of dopamine ARC neurons. Trpc5 is also required for eliciting prolactin-evoked tonic plateau potentials in these neurons that are part of a regulatory feedback circuit. Trpc5 mutant females show severe prolactin deficiency or hypoprolactinemia that is associated with irregular reproductive cyclicity, gonadotropin imbalance, and impaired reproductive capabilities. These results reveal a previously unknown role for the cation channel Trpc5 in prolactin homeostasis of female mice and provide strategies to explore the genetic basis of reproductive disorders and other malfunctions associated with defective prolactin regulation in humans.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedades Genéticas Congénitas/genética , Trastornos de la Lactancia/genética , Prolactina/deficiencia , Prolactina/genética , Canales Catiónicos TRPC/genética , Animales , Núcleo Arqueado del Hipotálamo/patología , Nivel de Alerta/fisiología , Neuronas Dopaminérgicas/patología , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Gonadotropinas/sangre , Gonadotropinas/genética , Homeostasis/genética , Humanos , Trastornos de la Lactancia/metabolismo , Trastornos de la Lactancia/patología , Potenciales de la Membrana/fisiología , Ratones , Mutación , Prolactina/sangre , Prolactina/metabolismo , Reproducción/fisiología , Transducción de Señal , Canales Catiónicos TRPC/deficiencia
3.
ACS Chem Neurosci ; 13(18): 2728-2742, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36094343

RESUMEN

Transient receptor potential canonical 5 (TRPC5) channels are predominantly expressed in the striatum and substantia nigra of the brain. These channels are permeable to calcium ions and are activated by oxidative stress. The physiological involvement of TRPC5 channels in temperature and mechanical sensation is well documented; however, evidence for their involvement in the pathophysiology of neurodegenerative disorders like Parkinson's disease (PD) is sparse. Thus, in the present study, the role of TRPC5 channels and their associated downstream signaling was elucidated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+) model of PD. Bilateral intranigral administration of MPTP and 24 h MPP+ exposure were performed to induce PD in the Sprague-Dawley rats and SH-SY5Y cells, respectively. MPTP led to behavioral anomalies and TRPC5 overexpression accompanied by increased calcium influx, apoptosis, oxidative stress, and mitochondrial dysfunctions. In addition, tyrosine hydroxylase (TH) expression was significantly lower in the midbrain and substantia nigra compared to sham animals. Intraperitoneal administration of potent and selective TRPC5 inhibitor, HC070 (0.1 and 0.3 mg/kg) reversed the cognitive and motor deficits seen in MPTP-lesioned rats. It also restored the TH and TRPC5 expression both in the striatum and midbrain. Furthermore, in vitro and in vivo studies suggested improvements in mitochondrial health along with reduced oxidative stress, apoptosis, and calcium-mediated excitotoxicity. Together, these results showed that inhibition of TRPC5 channels plays a crucial part in the reversal of pathology in the MPTP/MPP+ model of Parkinson's disease.


Asunto(s)
Intoxicación por MPTP , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Canales de Potencial de Receptor Transitorio , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Humanos , Intoxicación por MPTP/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPC , Tirosina 3-Monooxigenasa/metabolismo
4.
Elife ; 102021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33683200

RESUMEN

TRPC5 channel is a nonselective cation channel that participates in diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression, and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here, we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative diacylglycerol molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a nonconductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.


Asunto(s)
Bencimidazoles/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/química , Bencimidazoles/metabolismo , Sitios de Unión , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Modelos Moleculares , Canales Catiónicos TRPC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA