Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Biol Reprod ; 110(5): 908-923, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38288660

RESUMEN

FOXP2 was initially characterized as a transcription factor linked to speech and language disorders. Single-cell RNA sequencing reveals that Foxp2 is enriched in the gonadotrope cluster of the pituitary gland and colocalized with the hormones LHB and FSHB in chickens and mice, implying that FOXP2 might be associated with reproduction in vertebrates. Herein, we investigated the roles of foxp2 in reproduction in a Foxp2-deficient zebrafish model. The results indicated that the loss of Foxp2 inhibits courtship behavior in adult male zebrafish. Notably, Foxp2 deficiency disrupts gonad development, leading to retardation of follicle development and a decrease in oocytes in females at the full-growth stage, among other phenotypes. The transcriptome analysis (RNA-seq) also revealed that differentially expressed genes clustered into the estrogen signaling and ovarian steroidogenesis-related signaling pathways. In addition, we found that Foxp2 deficiency could modulate the hypothalamic-pituitary-gonadal axis, especially the regulation of lhb and fshb expression, in zebrafish. In contrast, the injection of human chorionic gonadotropin, a specific LH agonist, partially rescues Foxp2-impaired reproduction in zebrafish, suggesting that Foxp2 plays an important role in the regulation of reproduction via the hypothalamic-pituitary-gonadal axis in zebrafish. Thus, our findings reveal a new role for Foxp2 in the regulation of reproduction in vertebrates.


Asunto(s)
Factores de Transcripción Forkhead , Sistema Hipotálamo-Hipofisario , Reproducción , Pez Cebra , Animales , Pez Cebra/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Femenino , Masculino , Reproducción/fisiología , Reproducción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Gónadas/metabolismo , Eje Hipotálamico-Pituitario-Gonadal
2.
J Recept Signal Transduct Res ; 44(1): 19-26, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38647103

RESUMEN

Kisspeptin is an important hormone involved in the stimulation of the hypothalamo-pituitary gonadal (HPG) axis. The HPG axis can be suppressed in certain conditions such as stress, which gives rise to the activation of the hypothalamo-pituitary-adrenal (HPA) axis. However, the physiological role of kisspeptin in the interaction of HPG and HPA axis is not fully understood yet. This study was conducted to investigate the possible effects of central kisspeptin injection on HPG axis as well as HPA axis activity. Adult male Wistar rats were randomly divided into seven groups as followed: sham (control), kisspeptin (50 pmol), P234 (1 nmol), kisspeptin + p234, kisspeptin + antalarmin (0.1 µg), kisspeptin + astressin 2B (1 µg), and kisspeptin + atosiban (300 ng/rat) (n = 10 each group). At the end of the experiments, the hypothalamus, pituitary, and serum samples of the rats were collected. There was no significant difference in corticotropic-releasing hormone immunoreactivity in the paraventricular nucleus of the hypothalamus, serum adrenocorticotropic hormone, and corticosterone levels among all groups. Moreover, no significant difference was detected in pituitary oxytocin level. Serum follicle-stimulating hormone and luteinizing hormone levels of the kisspeptin, kisspeptin + antalarmin, and kisspeptin + astressin 2B groups were significantly higher than the control group. Serum testosterone levels were significantly higher in the kisspeptin kisspeptin + antalarmin, kisspeptin + astressin 2B, and kisspeptin + atosiban groups compared to the control group. Our findings suggest that central kisspeptin injection causes activation in the HPG axis, but not the HPA axis in male rats.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Kisspeptinas , Sistema Hipófiso-Suprarrenal , Ratas Wistar , Animales , Masculino , Kisspeptinas/administración & dosificación , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Fragmentos de Péptidos/administración & dosificación , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Corticosterona/sangre , Vasotocina/farmacología , Vasotocina/administración & dosificación , Testosterona/sangre , Inyecciones Intraventriculares , Gónadas/metabolismo , Gónadas/efectos de los fármacos , Hipófisis/metabolismo , Hipófisis/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Adrenocorticotrópica/sangre , Hormona Liberadora de Corticotropina , Oligopéptidos
3.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38800960

RESUMEN

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Asunto(s)
Carpas , Kisspeptinas , Melatonina , Fotoperiodo , Maduración Sexual , Animales , Melatonina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/genética , Femenino , Carpas/metabolismo , Carpas/genética , Carpas/crecimiento & desarrollo , Carpas/fisiología , Maduración Sexual/fisiología , Proteínas de Peces/metabolismo , Proteínas de Peces/genética
4.
Aging Male ; 27(1): 2346322, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38676285

RESUMEN

Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.


Asunto(s)
Biomarcadores , Hipogonadismo , Células Intersticiales del Testículo , Proteínas , Testosterona , Humanos , Masculino , Hipogonadismo/sangre , Persona de Mediana Edad , Valores de Referencia , Proteínas/análisis , Testosterona/sangre , Biomarcadores/sangre , Anciano , Adulto , Insulinas/sangre , Insulina/sangre
5.
Environ Sci Technol ; 58(1): 194-206, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38113192

RESUMEN

Bis(2-ethylhexyl)tetrabromophthalate (TBPH) has been widely detected in the environment and organisms; thus, its toxic effects on male reproduction were systematically studied. First, we found that TBPH can stably bind to the androgen receptor (AR) based on in silico molecular docking results and observed an antagonistic activity, but not agonistic activity, on the AR signaling pathway using a constructed AR-GRIP1 yeast assay. Subsequently, we validated the adverse effects on male germ cells by observing inhibited androgen production and proliferation in Leydig cells upon in vitro exposure and affected general motility and motive tracks of zebrafish sperm upon ex vivo exposure. Finally, the in vivo reproductive toxicity was demonstrated in male zebrafish by reduced mating behavior in F0 generation when paired with unexposed females and abnormal development of their offspring. In addition, reduced sperm motility and impaired germ cells in male zebrafish were also observed, which may be related to the disturbed homeostasis of sex hormones. Notably, the specifically suppressed AR in the brain provides further evidence for the antagonistic effects as above-mentioned. These results confirmed that TBPH affected male reproduction through a classical nuclear receptor-mediated pathway, which would be helpful for assessing the ecological and health risks of TBPH.


Asunto(s)
Semen , Pez Cebra , Animales , Femenino , Masculino , Simulación del Acoplamiento Molecular , Motilidad Espermática , Reproducción
6.
Gen Comp Endocrinol ; 353: 114529, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643847

RESUMEN

Germ cells are highly conserved in the gonads, nurtured to either develop into a gamete or self-renew into a stem cell reserve. Preserving the germ cell pool and protecting the reproductive organs is essential for maintaining an individual's fertility. Several factors, including a sedentary lifestyle, pollutants, hormonal disruption, drugs, and a disease condition, have been shown to impair normal reproductive function. Irisin has recently been identified as an adipomyokine involved in modulating physiological functions based on the body's metabolic status. It is being studied for its role in various functions, including fertility. Findings show the localization of irisin in various parts of the reproductive axis, with the highest levels observed during puberty and pregnancy. This raises questions about its role and function in reproduction. Studies support irisin's role in protecting against disease-induced reproductive abnormalities and infertility. Therefore, the current review focuses on how irisin influences spermatogenesis and ovarian follicular development and plays a significant role in indirectly preserving the germ cell pool by protecting the gonads against oxidative stress and inflammation.


Asunto(s)
Fibronectinas , Reproducción , Humanos , Fibronectinas/metabolismo , Animales , Femenino , Reproducción/fisiología , Masculino , Espermatogénesis/fisiología
7.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583312

RESUMEN

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Fluorocarburos , Fenoles , Masculino , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Animales , Salud Reproductiva , Reproducción/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Testículo/efectos de los fármacos
8.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891991

RESUMEN

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Animales , Hormona Folículo Estimulante/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Andrógenos/metabolismo , Testosterona/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396659

RESUMEN

Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.


Asunto(s)
Ovulación , Prolactina , Animales , Femenino , Humanos , Kisspeptinas/metabolismo , Mamíferos/metabolismo , Ovulación/metabolismo , Adenohipófisis/metabolismo , Prolactina/metabolismo , Receptores de Prolactina/metabolismo
10.
Fish Physiol Biochem ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625478

RESUMEN

This study aims to explore whether glycerol monolaurate (GML) can improve reproductive performance of female zebrafish (Danio rerio) and the survival percentage of their offspring. Three kinds of isonitrogenous and isolipid diets, including basal diet (control) and basal diet containing 0.75 g/kg GML (L_GML) and 1.5 g/kg GML (H_GML), were prepared for 4 weeks feeding trial. The results show that GML increased the GSI of female zebrafish. GML also enhanced reproductive performance of female zebrafish. Specifically, GML increased spawning number and hatching rate of female zebrafish. Moreover, GML significantly increased the levels of triglycerides (TG), lauric acid, and estradiol (E2) in the ovary (P < 0.05). Follicle-stimulating hormone (FSH) levels in the ovary and brain also significantly increased in the L_GML group (P < 0.05). Besides, dietary GML regulated the hypothalamus-pituitary-gonad (HPG) axis evidenced by the changed expression levels of HPG axis-related genes in the brain and ovary of the L_GML and H_GML groups compared with the control group. Furthermore, compared with the control group, the expression levels of HPG axis-related genes (kiss2, kiss1r, kiss2r, gnrh3, gnrhr1, gnrhr3, lhß, and esr2b) in the brain of the L_GML group were significantly increased (P < 0.05), and the expression levels of HPG axis-related genes (kiss1, kiss2, kiss2r, gnrh2, gnrh3, gnrhr4, fshß, lhß, esr1, esr2a, and esr2b) in the brain of the H_GML group were significantly increased (P < 0.05). These results suggest that GML may stimulate the expression of gnrh2 and gnrh3 by increasing the expression level of kiss1 and kiss2 genes in the hypothalamus, thus promoting the synthesis of FSH and E2. The expression levels of genes associated with gonadotropin receptors (fshr and lhr) and gonadal steroid hormone synthesis (cyp11a1, cyp17, and cyp19a) in the ovary were also significantly upregulated by dietary GML (P < 0.05). The increasing expression level of cyp19a also may promote the FSH synthesis. Particularly, GML enhanced the richness and diversity and regulated the species composition of intestinal microbiota in female zebrafish. Changes in certain intestinal microorganisms may be related to the expression of certain genes involved in the HPG axis. In addition, L_GML and H_GML both significantly decreased larvae mortality at 96 h post fertilization and their mortality during the first-feeding period (P < 0.05), revealing the enhanced the starvation tolerance of zebrafish larvae. In summary, dietary GML regulated genes related to HPG axis to promote the synthesis of E2 and FSH and altered gut microbiota in female zebrafish, and improved the survival percentage of their offspring.

11.
J Environ Sci (China) ; 142: 193-203, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527884

RESUMEN

Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Pez Cebra/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Compuestos de Fenilurea/farmacología , Reproducción , Contaminantes Químicos del Agua/metabolismo
12.
Front Neuroendocrinol ; 66: 100998, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35597328

RESUMEN

Differential HPA axis function has been proposed to underlie sex-differences in mental disorders; however, the impact of fluctuating sex hormones across the menstrual cycle on HPA axis activity is still unclear. This meta-analysis investigated basal cortisol concentrations as a marker for HPA axis activity across the menstrual cycle. Through a systematic literature search of five databases, 121 longitudinal studies were included, summarizing data of 2641 healthy, cycling participants between the ages of 18 and 45. The meta-analysis showed higher cortisol concentrations in the follicular vs. luteal phase (dSMC = 0.12, p =.004, [0.04 - 0.20]). Comparisons between more precise cycle phases were mostly insignificant, aside from higher concentrations in the menstrual vs. premenstrual phase (dSMC = 0.17, [0.02 - 0.33], p =.03). In all included studies, nine samples used established cortisol parameters to indicate HPA axis function, specifically diurnal profiles (k = 4) and the cortisol awakening response (CAR) (k = 5). Therefore, the meta-analysis highlights the need for more rigorous investigation of HPA axis activity and menstrual cycle phase.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Adolescente , Adulto , Femenino , Humanos , Hidrocortisona/análisis , Sistema Hipotálamo-Hipofisario/fisiología , Ciclo Menstrual/fisiología , Persona de Mediana Edad , Sistema Hipófiso-Suprarrenal/fisiología , Saliva/química , Adulto Joven
13.
Horm Behav ; 151: 105339, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878049

RESUMEN

Reproduction is the biological process by which new individuals are produced by their parents. It is the fundamental feature of all known life and is required for the existence of all species. All mammals reproduce sexually, a process that involves the union of two reproductive cells, one from a male and one from a female. Sexual behaviors are a series of actions leading to reproduction. They are composed of appetitive, action, and refractory phases, each supported by dedicated developmentally-wired neural circuits to ensure high reproduction success. In rodents, successful reproduction can only occur during female ovulation. Thus, female sexual behavior is tightly coupled with ovarian activity, namely the estrous cycle. This is achieved through the close interaction between the female sexual behavior circuit and the hypothalamic-pituitary-gonadal (HPG) axis. In this review, we will summarize our current understanding, learned mainly in rodents, regarding the neural circuits underlying each phase of the female sexual behaviors and their interaction with the HPG axis, highlighting the gaps in our knowledge that require future investigation.


Asunto(s)
Ovario , Reproducción , Animales , Femenino , Masculino , Ovulación , Ciclo Estral , Mamíferos
14.
Horm Behav ; 154: 105389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327549

RESUMEN

Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.g., food supply), but social cues are also important. Females may be more sensitive to supplementary cues because of their greater role in reproductive timing decisions, while males may only require predictive cues. We tested this hypothesis by food-supplementing female and male colonial seabirds (black-legged kittiwakes, Rissa tridactyla) during the pre-breeding season. We measured colony attendance via GPS devices, quantified pituitary and gonadal responses to gonadotropin releasing hormone (GnRH) challenge, and observed subsequent laying phenology. Food supplementation advanced laying phenology and increased colony attendance. While female pituitary responses to GnRH were consistent across the pre-breeding season, males showed a peak in pituitary sensitivity at approximately the same time that most females were initiating follicle development. The late peak in male pituitary response to GnRH questions a common assumption that males primarily rely on predictive cues (e.g., photoperiod) while females also rely on supplementary cues (e.g., food availability). Instead, male kittiwakes may integrate synchronising cues from their social environment to adjust their reproductive timing to coincide with female timing.


Asunto(s)
Charadriiformes , Hormona Liberadora de Gonadotropina , Animales , Femenino , Masculino , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Reproducción/fisiología , Hipófisis/metabolismo , Fotoperiodo
15.
J Exp Biol ; 226(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827114

RESUMEN

Animals face unpredictable challenges that require rapid, facultative physiological reactions to support survival but may compromise reproduction. Bats have a long-standing reputation for being highly sensitive to stressors, with sensitivity and resilience varying both within and among species, yet little is known about how stress affects the signaling that regulates reproductive physiology. Here, we provide the first description of the molecular response of the hypothalamic-pituitary-gonadal (HPG) axis of male big brown bats (Eptesicus fuscus) in response to short-term stress using a standardized restraint manipulation. This acute stressor was sufficient to upregulate plasma corticosterone and resulted in a rapid decrease in circulating testosterone. While we did not find differences in the mRNA expression of key steroidogenic enzymes (StAR, aromatase, 5-alpha reductase), seminiferous tubule diameter was reduced in stressed bats coupled with a 5-fold increase in glucocorticoid receptor (GR) mRNA expression in the testes. These changes, in part, may be mediated by RFamide-related peptide (RFRP) because fewer immunoreactive cell bodies were detected in the brains of stressed bats compared with controls - suggesting a possible increase in secretion - and increased RFRP expression locally in the gonads. The rapid sensitivity of the bat testes to stress may be connected to deleterious impacts on tissue health and function as supported by significant transcriptional upregulation of key pro-apoptotic signaling molecules (Bax, cytochrome c). Experiments like this broadly contribute to our understanding of the stronger ecological predictions regarding physiological responses of bats within the context of stress, which may impact decisions surrounding animal handling and conservation approaches.


Asunto(s)
Quirópteros , Animales , Masculino , Quirópteros/fisiología , Neuroendocrinología , Reproducción/fisiología , Gónadas , ARN Mensajero
16.
Gen Comp Endocrinol ; 334: 114216, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36681254

RESUMEN

Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish. In the microfiber-exposed group, microfiber accumulation was confirmed in the gills and intestines. One week after exposure to two different concentrations of microfibers (500 and 1,000 fibers/L), the fish showed increased expression of gonadotropin-releasing hormone (GnRH) and luteinizing hormone receptor (LH-R) mRNA. From day 10 of exposure to the microfibers, there was an increase in the expression of the gonadotropin-inhibitory hormone (GnIH) mRNA and a decrease in the expression of GnRH and LH-R mRNA. There was an increase in the cytochrome P450 aromatase (CYP19a) mRNA expression and plasma estradiol (E2) concentration in the 1,000 fibers/L exposure group. High vitellogenin (VTG) mRNA expression was confirmed seven days after exposure in the 1,000 fibers/L group, which was consistent with the VTG mRNA expression signals detected in the liver using in situ hybridization. These results suggest that microfiber ingestion may cause short-term endocrinal disruption of the HPG axis in male medaka, which in turn may interfere with their normal maturation process.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Masculino , Oryzias/genética , Oryzias/metabolismo , Plásticos/metabolismo , Microplásticos/metabolismo , Reproducción , Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , ARN Mensajero/metabolismo , Contaminantes Químicos del Agua/metabolismo , Vitelogeninas/metabolismo
17.
Endocr Regul ; 57(1): 292-303, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38127687

RESUMEN

Hypothalamic-pituitary gonadal (HPG) axis is responsible for the development and regulation of the female reproductive system. In polycystic ovary syndrome (PCOS), there is a disturbance in the HPG axis. Kisspeptin, a neuropeptide produced by the KISS1 gene, plays a vital role in the regulation of HPG axis by binding with its receptors KISS1R/GPR54, and stimulates gonadotropin secretion from the hypothalamus into pituitary to release luteinizing hormone (LH) and follicle stimulating hormone (FSH). Polymorphisms or mutations in the KISS1 gene can cause disturbance in the kisspeptin signaling pathway and is thought to disrupt HPG axis. Altered signaling of kisspeptin can cause abnormal secretion of GnRH pulse, which leads to increased LH/FSH ratio, thereby affecting androgen levels and ovulation. The increased levels of androgen worsen the symptoms of PCOS. In the present article, we review the molecular physiology and pathology of kisspeptin and how it is responsible for the development of PCOS. The goal of this review article is to provide an overview and metabolic profile of kisspeptin in PCOS patients and the expression of kisspeptin in PCOS animal models. In the present article, we also review the molecular physiology and pathology of kisspeptin and how it is responsible for the development of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Andrógenos , Hormona Luteinizante , Hormona Folículo Estimulante
18.
Anim Biotechnol ; 34(3): 619-632, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34747679

RESUMEN

The aim of this study was to identify genes related to precocious puberty expressed in the pituitary of goats at different growth stages by suppression subtractive hybridization (SSH). The pituitary glands from Jining Gray (JG) goats (early puberty) and Liaoning Cashmere (LC) goats (late puberty) at 30, 90, and 180 days were used in this study. To identify differentially expressed genes (DEGs) in the pituitary glands, mRNA was extracted from these tissues, and SSH libraries were constructed and divided into the following groups: juvenile group (30-JG vs. 30-LC, API), puberty group (90-JG vs. 180-LC, BPI), and control group (90-JG vs. 90-LC, EPI). A total of 60, 49, and 58 DEGs were annotated by 222 Gene Ontology (GO) terms and 75 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the DEGs were significantly enriched in GO terms related to 'structural constituent of ribosome', 'translation' and 'GTP binding', and numerous DEGs were also significantly enriched in KEGG terms related to the Jak-STAT signaling and oocyte meiosis pathways. Candidate genes associated with precocious puberty and sexual development were screened from the SSH libraries. These genes were analyzed to determine if they were expressed in the pituitary tissues of the goats at different growth stages and to identify genes that may influence the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we found precocious puberty-related genes (such as PRLP0, EIF5A, and YWHAH) that may be interesting from an evolutionary perspective and that could be investigated for use in future goat breeding programs. Our results provide a valuable dataset that will facilitate further research into the reproductive biology of goats.


Asunto(s)
Perfilación de la Expresión Génica , Cabras , Animales , Técnicas de Hibridación Sustractiva , Perfilación de la Expresión Génica/veterinaria , Hipófisis , Transducción de Señal
19.
J Fish Biol ; 102(2): 302-316, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36477945

RESUMEN

The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.


Asunto(s)
Gónadas , Reproducción , Animales , Filogenia , Reproducción/fisiología , Gónadas/metabolismo , Vertebrados , Peces/fisiología , Mamíferos , Sistema Inmunológico
20.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958948

RESUMEN

Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.


Asunto(s)
Hipogonadismo , Síndrome de Klinefelter , Pubertad Tardía , Femenino , Masculino , Humanos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Hipogonadismo/tratamiento farmacológico , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA