Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36122200

RESUMEN

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Antivirales/química , Antivirales/farmacología , Humanos , Péptidos/química , Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 119(16): e2119467119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35363556

RESUMEN

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies due to structural and dynamic changes of the viral spike glycoprotein (S). The heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains of S drive virus­host membrane fusion by assembly into a six-helix bundle, resulting in delivery of viral RNA into the host cell. We surveyed mutations of currently reported SARS-CoV-2 variants and selected eight mutations, including Q954H, N969K, and L981F from the Omicron variant, in the postfusion HR1HR2 bundle for functional and structural studies. We designed a molecular scaffold to determine cryogenic electron microscopy (cryo-EM) structures of HR1HR2 at 2.2­3.8 Å resolution by linking the trimeric N termini of four HR1 fragments to four trimeric C termini of the Dps4 dodecamer from Nostoc punctiforme. This molecular scaffold enables efficient sample preparation and structure determination of the HR1HR2 bundle and its mutants by single-particle cryo-EM. Our structure of the wild-type HR1HR2 bundle resolves uncertainties in previously determined structures. The mutant structures reveal side-chain positions of the mutations and their primarily local effects on the interactions between HR1 and HR2. These mutations do not alter the global architecture of the postfusion HR1HR2 bundle, suggesting that the interfaces between HR1 and HR2 are good targets for developing antiviral inhibitors that should be efficacious against all known variants of SARS-CoV-2 to date. We also note that this work paves the way for similar studies in more distantly related viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Secuencia Conservada , Humanos , Dominios Proteicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
3.
J Sports Sci ; 37(12): 1411-1419, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30657025

RESUMEN

This study compared heart rate (HR) measurements for the Fitbit Charge HR 2 (Fitbit) and the Apple Watch devices with HR measurements for electrocardiogram (ECG). Thirty young adults (15/15 females/males, age 23.5 ± 3.0 years) completed the Bruce Protocol. HR measurements were recorded from the ECG and both devices every minute. Average HR for each participant was calculated for very light, light, moderate, vigorous and very vigorous intensities based on ECG-measured HR. A concordance correlation coefficient (CCC) was calculated to examine the strength of the relationship between ECG measured HR and HR measured by each device. Relative error rates (RER) were also calculated to indicate the difference between each device and ECG. An equivalence test was conducted to examine the equivalence of HRs measured by devices and ECG. The Apple Watch showed lower RER (2.4-5.1%) compared with the Fitbit (3.9-13.5%) for all exercise intensities. For both devices, the strongest relationship with ECG-measured HR was found for very light PA with very high CCC (>.90) and equivalence. The strength of the relationship declined as exercise intensity increased for both devices. These findings indicate that the accuracy of real-time HR monitoring by the Apple Watch and Fitbit Charge HR2 is reduced as exercise intensity increases.


Asunto(s)
Electrocardiografía , Ejercicio Físico , Monitores de Ejercicio/normas , Frecuencia Cardíaca , Monitoreo Fisiológico/instrumentación , Adulto , Femenino , Humanos , Masculino , Adulto Joven
4.
Acta Cardiol ; 70(6): 707-11, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26717220

RESUMEN

OBJECTIVES: The objective of this study is to evaluate the prevalence of HR2 polymorphism among patients with pulmonary embolism (PE) and healthy subjects. BACKGROUND: Polymorphism in the factor V gene named HR2 has been described as a possible risk factor for venous thromboembolism (VTE) development. Contradictive results on this association have been reported. METHODS: Eighty-five patients admitted for PE and 72 healthy subjects were included in the study. Thrombophilia screening using genetic tests for factor V Leiden (G1691A/Leiden and HR2 haplotype) and other genetic mutations were investigated. RESULTS: Of 85 patients with PE, 20 (23.53%) carried the HR2 haplotype. Further, a majority of the patients with HR2 haplotype had recurrent venous thrombosis or PE (15 out of 20 patients). The HR2 haplotype was detected in 6 (8.3%) out of 72 healthy subjects. Patients had significantly higher HR2 haplotype frequency than healthy controls (P = 0.001). HR2 carriers had a three-fold increase in risk of developing PE (OR = 3.38, 95% CI = 1.27-8.96, P = 0.011). After adjustment for other tested defects for thrombophilia, HR2 haplotype was associated with increased risk of thromboembolic events (OR = 3.05, 95% CI = 1.11-8.35, P = 0.03). However, after adjustment for sex and age, HR2 polymorphism was no longer associated with the risk of thromboembolic event (OR = 1.22, 95% CI = 0.34-4.38, P = 0.76). CONCLUSIONS: Our study does not support the notion that factor V HR2 haplotype might be a risk factor for thrombosis despite its high prevalence among patients with PE.


Asunto(s)
ADN/genética , Factor V/genética , Predisposición Genética a la Enfermedad , Polimorfismo Genético , Embolia Pulmonar/genética , Adulto , Factor V/metabolismo , Femenino , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Embolia Pulmonar/sangre , Estudios Retrospectivos
5.
J Pharmacol Toxicol Methods ; 128: 107539, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38969309

RESUMEN

Acne vulgaris, a chronic inflammatory skin disease with a high prevalence worldwide, necessitates reliable preclinical models for both understanding its pathogenesis and evaluating potential anti-acne therapies. This study aims to establish a robust mouse model using intracutaneous injection of Cutibacterium acnes bacterial suspension. Three hairless mouse strains (SKH-hr1, SKH-hr2 brown, and SKH-hr2 + ApoE) were systematically compared to ascertain the stains most closely resembling acne in humans. Various assessments, including photo documentation, biophysical evaluation, blood analysis, and histopathology, were conducted. Despite all strains exhibiting acne-like lesions, SKH-hr1 mice emerged as the most suitable model, demonstrating the most satisfactory results across multiple criteria. This research underscores the significance of employing hairless mice strains as models in acne studies to enhance and facilitate the development of effective therapeutic interventions.

6.
Cell Rep Med ; 5(2): 101418, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340726

RESUMEN

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC50 values ranging from 0.16 to 5.53 nM. A1L35HR2m-Chol also potently inhibits spike-protein-mediated cell-cell fusion and the replication of authentic Omicron BA.2.12.1, BA.5, and EG.5.1. Importantly, A1L35HR2m-Chol distributed widely in respiratory tract tissue and had a long half-life (>10 h) in vivo. Intranasal administration of A1L35HR2m-Chol to K18-hACE2 transgenic mice potently inhibited Omicron BA.5 and EG.5.1 infection both prophylactically and therapeutically.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Ratones , Administración Intranasal , Ratones Transgénicos , Péptidos/farmacología , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico
7.
Front Immunol ; 13: 925922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837396

RESUMEN

Although feline coronavirus (FCoV) infection is extremely common in cats, there are currently few effective treatments. A peptide derived from the heptad repeat 2 (HR2) domain of the coronavirus (CoV) spike protein has shown effective for inhibition of various human and animal CoVs in vitro, but further use of FCoV-HR2 in vivo has been limited by lack of practical delivery vectors and small animal infection model. To overcome these technical challenges, we first constructed a recombinant Bacillus subtilis (rBSCotB-HR2P) expressing spore coat protein B (CotB) fused to an HR2-derived peptide (HR2P) from a serotype II feline enteric CoV (FECV). Immunogenic capacity was evaluated in mice after intragastric or intranasal administration, showing that recombinant spores could trigger strong specific cellular and humoral immune responses. Furthermore, we developed a novel mouse model for FECV infection by transduction with its primary receptor (feline aminopeptidase N) using an E1/E3-deleted adenovirus type 5 vector. This model can be used to study the antiviral immune response and evaluate vaccines or drugs, and is an applicable choice to replace cats for the study of FECV. Oral administration of rBSCotB-HR2P in this mouse model effectively protected against FECV challenge and significantly reduced pathology in the digestive tract. Owing to its safety, low cost, and probiotic features, rBSCotB-HR2P is a promising oral vaccine candidate for use against FECV/FCoV infection in cats.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Felino , Animales , Bacillus subtilis/genética , Antígenos CD13/metabolismo , Gatos , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunidad , Ratones , Péptidos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Esporas Bacterianas/genética
8.
Comput Struct Biotechnol J ; 20: 3533-3544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765543

RESUMEN

Both novel and conventional vaccination strategies have been implemented worldwide since the onset of coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite various medical advances in the treatment and prevention of the spread of this contagious disease, it remains a major public health threat with a high mortality rate. As several lethal SARS-CoV-2 variants continue to emerge, the development of several vaccines and medicines, each with certain advantages and disadvantages, is underway. Additionally, many modalities are at various stages of research and development or clinical trials. Here, we summarize emerging SARS-CoV-2 variants, including delta, omicron, and "stealth omicron," as well as available oral drugs for COVID-19. We also discuss possible antigen candidates other than the receptor-binding domain protein for the development of a universal COVID-19 vaccine. The present review will serve as a helpful resource for future vaccine and drug development to combat COVID-19.

9.
Gene Rep ; 26: 101420, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34754982

RESUMEN

The ongoing pandemic of COVID-19 caused by the SARS-COV2 virus has triggered millions of deaths around the globe. Emerging several variants of the virus with increased transmissibility, the severity of disease, and the ability of the virus to escape from the immune system has a cause for concerns. Here, we compared the spike protein sequence of 91 human SARS CoV2 strains of Iraq to the first reported sequence of SARS-CoV2 isolate from Wuhan Hu-1/China. The strains were isolated between June 2020 and March 2021. Twenty-two distinct mutations were identified within the spike protein regions which were: L5F, L18F, T19R, S151T, G181A, A222V, A348S, L452 (Q or M), T478K, N501Y, A520S, A522V, A570D, S605A, D614G, Q675H, N679K, P681H, T716I, S982A, A1020S, D1118H. The most frequently mutations occurred at the D614G (87/91), followed by S982A (50/91), and A570D (48/91), respectively. In addition, a distinct shift was observed in the type of SARS-COV2 variants present in 2020 compared to 2021 isolates. In 2020, B.1.428.1 lineage was appeared to be a dominant variant (85%). However, the diversity of the variants increased in 2021, and the majority (73%) of the isolated were appeared to belong to B.1.1.7 lineage (VOC/alpha variants). To our knowledge, this is the first major genome analysis of SARS-CoV2 in Iraq. The data from this research could provide insights into SARS-CoV2 evolution, and can be potentially used to recognize the effective vaccine against the disease.

10.
Gene Rep ; 26: 101537, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35128175

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease (COVID-19) pandemic, has infected millions of people globally. Genetic variation and selective pressures lead to the accumulation of single nucleotide polymorphism (SNP) within the viral genome that may affect virulence, transmission rate, viral recognition and the efficacy of prophylactic and interventional measures. To address these concerns at the genomic level, we assessed the phylogeny and SNPs of the SARS-CoV-2 mutant population collected to date in Iran in relation to globally reported variants. Phylogenetic analysis of mutant strains revealed the occurrence of the variants known as B.1.1.7 (Alpha), B.1.525 (Eta), and B.1.617 (Delta) that appear to have delineated independently in Iran. SNP analysis of the Iranian sequences revealed that the mutations were predominantly positioned within the S protein-coding region, with most SNPs localizing to the S1 subunit. Seventeen S1-localizing SNPs occurred in the RNA binding domain that interacts with ACE2 of the host cell. Importantly, many of these SNPs are predicted to influence the binding of antibodies and anti-viral therapeutics, indicating that the adaptive host response appears to be imposing a selective pressure that is driving the evolution of the virus in this closed population through enhancing virulence. The SNPs detected within these mutant cohorts are addressed with respect to current prophylactic measures and therapeutic interventions.

11.
mBio ; 12(6): e0231521, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34781748

RESUMEN

We have detected two mutations in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at amino acid positions 1163 and 1167 that appeared independently in multiple transmission clusters and different genetic backgrounds. Furthermore, both mutations appeared together in a cluster of 1,627 sequences belonging to clade 20E. This cluster is characterized by 12 additional single nucleotide polymorphisms but no deletions. The available structural information on the S protein in the pre- and postfusion conformations predicts that both mutations confer rigidity, which could potentially decrease viral fitness. Accordingly, we observed reduced infectivity of this spike genotype relative to the ancestral 20E sequence in vitro, and the levels of viral RNA in nasopharyngeal swabs were not significantly higher. Furthermore, the mutations did not impact thermal stability or antibody neutralization by sera from vaccinated individuals but moderately reduce neutralization by convalescent-phase sera from the early stages of the pandemic. Despite multiple successful appearances of the two spike mutations during the first year of SARS-CoV-2 evolution, the genotype with both mutations was displaced upon the expansion of the 20I (Alpha) variant. The midterm fate of the genotype investigated was consistent with the lack of advantage observed in the clinical and experimental data. IMPORTANCE We observed repeated, independent emergence of mutations in the SARS-CoV-2 spike involving amino acids 1163 and 1167, within the HR2 functional motif. Conclusions derived from evolutionary and genomic diversity analysis suggest that the co-occurrence of both mutations might pose an advantage for the virus and therefore a threat to effective control of the epidemic. However, biological characterization, including in vitro experiments and analysis of clinical data, indicated no clear benefit in terms of stability or infectivity. In agreement with this, continuous epidemiological surveillance conducted months after the first observations revealed that both mutations did not successfully outcompete other variants and stopped circulating 9 months after their initial detection. Additionally, we evaluated the potential of both mutations to escape neutralizing antibodies, finding that the presence of these two mutations on their own is not likely to confer antibody escape. Our results provide an example of how newly emerged spike mutations can be assessed to better understand the risk posed by new variants and indicate that some spike mutations confer no clear advantage to the virus despite independently emerging multiple times and are eventually displaced by fitter variants.


Asunto(s)
Evolución Molecular , Mutación , Fenotipo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , COVID-19/virología , Europa (Continente) , Variación Genética , Genoma Viral , Humanos , Pruebas de Neutralización , SARS-CoV-2/inmunología
12.
Immunol Res ; 69(6): 496-519, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34410575

RESUMEN

The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.


Asunto(s)
COVID-19/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Células Gigantes/metabolismo , Fusión de Membrana/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Membrana Celular/fisiología , Membrana Celular/virología , Células Gigantes/virología , Humanos , SARS-CoV-2 , Alineación de Secuencia , Internalización del Virus
13.
bioRxiv ; 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32995773

RESUMEN

Vaccination against SARS-CoV-2 provides an effective tool to combat the COIVD-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited two-fold-higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T-cell immunity, thereby providing a promising vaccine candidate.

14.
Methods Mol Biol ; 2099: 9-20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31883084

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen with a broad host range. The extent of MERS-CoV in nature can be traced to its adaptable cell entry steps. The virus can bind host-cell carbohydrates as well as proteinaceous receptors. Following receptor interaction, the virus can utilize diverse host proteases for cleavage activation of virus-host cell membrane fusion and subsequent genome delivery. The fusion and genome delivery steps can be completed at variable times and places, either at or near cell surfaces or deep within endosomes. Investigators focusing on the CoVs have developed several methodologies that effectively distinguish these different cell entry pathways. Here we describe these methods, highlighting virus-cell entry factors, entry inhibitors, and viral determinants that specify the cell entry routes. While the specific methods described herein were utilized to reveal MERS-CoV entry pathways, they are equally suited for other CoVs, as well as other protease-dependent viral species.


Asunto(s)
Infecciones por Coronavirus/virología , Genoma Viral/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Internalización del Virus , Membrana Celular/virología , Endosomas/virología , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Péptido Hidrolasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Curr Res Microb Sci ; 1: 53-61, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33236001

RESUMEN

A severe form of pneumonia, named coronavirus disease 2019 (COVID-19) by the World Health Organization, broke out in China and rapidly developed into a global pandemic, with millions of cases and hundreds of thousands of deaths reported globally. The novel coronavirus, which was designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the etiological agent of COVID-19. On the basis of experience accumulated following previous SARS-CoV and MERS-CoV outbreaks and research, a series of studies have been conducted rapidly, and major progress has been achieved with regard to the understanding of the phylogeny and genomic organization of SARS-CoV-2 in addition its molecular mechanisms of infection and replication. In the present review, we summarized crucial developments in the elucidation of the structure and function of key SARS-CoV-2 proteins, especially the main protease, RNA-dependent RNA polymerase, spike glycoprotein, and nucleocapsid protein. Results of studies on their associated inhibitors and drugs have also been highlighted.

16.
Comput Struct Biotechnol J ; 18: 2117-2131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913581

RESUMEN

There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.

17.
Cell Rep ; 27(9): 2593-2607.e5, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141685

RESUMEN

The HIV-1 envelope glycoprotein (Env) maintains a delicate balance between mediating viral entry and escaping antibody neutralization. Adaptation during transmission of neutralization-sensitive Envs with an "open" conformation remains poorly understood. By passaging a replication-competent simian-human immunodeficiency virus carrying a highly neutralization-sensitive Env (SHIVCNE40) in rhesus macaques, we show that SHIVCNE40 develops enhanced replication kinetics associated with neutralization resistance against antibodies and autologous serum. A gp41 substitution, E658K, functions as the major determinant for these properties. Structural modeling and functional verification indicate that the substitution disrupts an intermolecular salt bridge with the neighboring protomer, thereby promoting fusion and facilitating immune evasion. This effect is applicable across diverse HIV-1 subtypes. Our results highlight the critical role of gp41 in shaping the neutralization profile and the overall conformation of Env during viral adaptation. The unique intermolecular salt bridge could potentially be utilized for rational vaccine design involving more stable HIV-1 envelope trimers.


Asunto(s)
Adaptación Fisiológica , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Internalización del Virus , Sustitución de Aminoácidos , Animales , Femenino , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Humanos , Evasión Inmune , Macaca mulatta , Mutación , Pruebas de Neutralización , Conformación Proteica , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/fisiología
18.
Jpn J Infect Dis ; 71(4): 286-290, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29709984

RESUMEN

Vaccinations with habu (Protobothrops flavoviridis) venom toxoid were administered to individuals living in Amami Oshima from 1965 to 2002, and its effectiveness was investigated in 1991. The results raised the possibility that normal human serum inherently contains an inhibitor of the hemorrhagic metalloproteinase HR2, considered to be one of the major components of habu venom. In this study, we investigated the interaction between the hemorrhagic metalloproteinases HR1 and HR2 from habu-venom and human alpha 2-macroglobulin (α2M). Hemorrhagic activity of HR2 was completely inhibited by human α2M. However, the hemorrhagic activity of the large molecule HR1a was not inhibited. Size exclusion chromatography revealed that human α2M captured the HR2 molecule and formed a complex with it, thus inhibiting hemorrhagic activity. These results suggest that human α2M plays an important role in the inhibition of hemorrhage induced by HR2 from habu venom.


Asunto(s)
Venenos de Crotálidos/enzimología , Metaloendopeptidasas/antagonistas & inhibidores , alfa 2-Macroglobulinas Asociadas al Embarazo/metabolismo , Trimeresurus , Animales , Humanos , Unión Proteica
19.
Clin Appl Thromb Hemost ; 24(2): 330-337, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29179580

RESUMEN

Coronary artery disease (CAD) is one of the chief causes of death in the world. Several hypotheses have been promoted as for the origin of the disease, among which are genetic predispositions and/or environmental factors. The aim of this study was to determine the effect of factor V (FV) gene polymorphisms (Leiden, G1691A [FVL] and HR2 A4070G) and to analyze their association with traditional risk factors in assessing the risk of CAD. Our study population included 200 Tunisian patients with symptomatic CAD and a control group of 300 participants matched for age and sex. All participants were genotyped for the FVL and HR2 polymorphisms. Multivariate logistic regression was applied to analyze independent factors associated with the risk of CAD. Our analysis showed that the FVL A allele frequency ( P < 10-3, odds ratio [OR] = 2.81, 95% confidence interval [CI] = 1.6-4.9) and GA genotype ( P < 10-3, OR = 4.03, 95% CI = 2.1-7.6) are significantly more prevalent among patients with CAD compared to those controls and may be predisposing to CAD. We further found that the FVL mutation is an independent risk factor whose effect is not modified by other factors (smoking, diabetes, hypertension, dyslipidemia, and a family history of CAD) in increasing the risk of the disease. However, analysis of FV HR2 variation does not show any statistically significant association with CAD. The FVL polymorphism may be an independent risk factor for CAD. However, further investigations on these polymorphisms and their possible synergisms with traditional risk factors for CAD could help to ascertain better predictability for CAD susceptibility.


Asunto(s)
Enfermedad de la Arteria Coronaria/etiología , Factor V/genética , Predisposición Genética a la Enfermedad , Polimorfismo Genético , Adulto , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Túnez/epidemiología
20.
Methods Ecol Evol ; 9(6): 1478-1488, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30008993

RESUMEN

Acoustic telemetry is an important tool for studying the behaviour of aquatic organisms in the wild.VEMCO high residence (HR) tags and receivers are a recent introduction in the field of acoustic telemetry and can be paired with existing algorithms (e.g. VEMCO positioning system [VPS]) to obtain high-resolution two-dimensional positioning data.Here, we present results of the first documented field test of a VPS composed of HR receivers (hereafter, HR-VPS). We performed a series of stationary and moving trials with HR tags (mean HR transmission period = 1.5 s) to evaluate the precision, accuracy and temporal capabilities of this positioning technology. In addition, we present a sample of data obtained for five European perch Perca fluviatilis implanted with HR tags (mean HR transmission period = 4 s) to illustrate how this technology can estimate the fine-scale behaviour of aquatic animals.Accuracy and precision estimates (median [5th-95th percentile]) of HR-VPS positions for all stationary trials were 5.6 m (4.2-10.8 m) and 0.1 m (0.02-0.07 m), respectively, and depended on the location of tags within the receiver array. In moving tests, tracks generated by HR-VPS closely mimicked those produced by a handheld GPS held over the tag, but these differed in location by an average of ≈9 m.We found that estimates of animal speed and distance travelled for perch declined when positional data for acoustically tagged perch were thinned to mimic longer transmission periods. These data also revealed a trade-off between capturing real nonlinear animal movements and the inclusion of positioning error.Our results suggested that HR-VPS can provide more representative estimates of movement metrics and offer an advancement for studying fine-scale movements of aquatic organisms, but high-precision survey techniques may be needed to test these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA