Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 19, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243263

RESUMEN

Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.


Asunto(s)
Neoplasias , Humanos , Linfocitos T CD8-positivos , Ciclo Celular , Membrana Celular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pronóstico
2.
Cancer Cell Int ; 24(1): 158, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711062

RESUMEN

OBJECTIVE: Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS: HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS: HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION: Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.

3.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833927

RESUMEN

Silicosis is a fatal occupational respiratory disease caused by the prolonged inhalation of respirable silica. The core event of silicosis is the heightened activity of fibroblasts, which excessively synthesize extracellular matrix (ECM) proteins. Our previous studies have highlighted that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) hold promise in mitigating silicosis and the significant role played by microRNAs (miRNAs) in this process. Delving deeper into this mechanism, we found that miR-148a-3p was the most abundant miRNA of the differential miRNAs in hucMSC-EVs, with the gene heat shock protein 90 beta family member 1 (Hsp90b1) as a potential target. Notably, miR-148a-3p's expression was downregulated during the progression of silica-induced pulmonary fibrosis both in vitro and in vivo, but was restored after hucMSC-EVs treatment (p < 0.05). Introducing miR-148a-3p mimics effectively hindered the collagen synthesis and secretion of fibroblasts induced by transforming growth factor-ß1 (TGF-ß1) (p < 0.05). Confirming our hypothesis, Hsp90b1 was indeed targeted by miR-148a-3p, with significantly reduced collagen activity in TGF-ß1-treated fibroblasts upon Hsp90b1 inhibition (p < 0.05). Collectively, our findings provide compelling evidence that links miR-148a-3p present in hucMSC-EVs with the amelioration of silicosis, suggesting its therapeutic potential by specifically targeting Hsp90b1, thereby inhibiting fibroblast collagen activities. This study sheds light on the role of miR-148a-3p in hucMSC-EVs, opening avenues for innovative therapeutic interventions targeting molecular pathways in pulmonary fibrosis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Fibrosis Pulmonar , Silicosis , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/terapia , Factor de Crecimiento Transformador beta1/metabolismo , Dióxido de Silicio/farmacología , MicroARNs/metabolismo , Silicosis/genética , Silicosis/terapia , Silicosis/patología , Fibroblastos/metabolismo , Colágeno/farmacología , Vesículas Extracelulares/metabolismo
4.
J Biol Chem ; 294(44): 16010-16019, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501246

RESUMEN

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90ß, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.


Asunto(s)
Adenosina-5'-(N-etilcarboxamida)/farmacología , Glicoproteínas de Membrana/química , Simulación del Acoplamiento Molecular , Adenosina-5'-(N-etilcarboxamida)/análogos & derivados , Regulación Alostérica , Sitios de Unión , Humanos , Glicoproteínas de Membrana/metabolismo , Unión Proteica
5.
Mol Cell Biochem ; 440(1-2): 23-31, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28801701

RESUMEN

Heat shock proteins (Hsp) are molecular chaperones that are responsible for protein folding and maintenance of cellular homeostasis. Hsp90, an important member of HSP family, has an important role in breast cancer. Glucose-regulated protein 94 (Grp94) is the endoplasmic reticulum paralog of Hsp90 encoded by Hsp90B1 gene. To test if this protein is overexpressed in dogs with mammary tumor, we estimated and compared its serum levels in healthy dogs and that of dogs with mammary tumors. Hsp90B1 mRNA expression was measured in tumorous and healthy mammary tissues (from age- and breed-matched dogs) by real-time PCR. The gene was found to be overexpressed in mammary tumors (3.586 ± 0.067 times). Further, it was heterologously expressed in a prokaryotic system as 90 kDa protein. A recombinant Grp94-based sandwich ELISA was developed to quantify serum Grp94 in dogs with mammary tumors. Based on receiver-operating characteristics' analysis, the assay was found to be 90.62% sensitive and 93.75% specific for a cutoff value of 0.35 with respect to histopathological staining in diagnosing the disease. The t test showed that serum Grp94 levels were significantly elevated (92.97 ± 3.62 ng/ml) in dogs with mammary tumors compared with healthy controls (10.30 ± 0.79 ng/ml) (p < 0.0001). These findings suggest that Grp94 might act as a potential biomarker for prognosis of canine mammary tumors and monitoring its therapy.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Enfermedades de los Perros/metabolismo , Regulación Neoplásica de la Expresión Génica , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/metabolismo , Glicoproteínas de Membrana/biosíntesis , Proteínas de Neoplasias/biosíntesis , Animales , Enfermedades de los Perros/patología , Perros , Femenino , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Animales/patología
6.
Biochem Biophys Res Commun ; 478(1): 417-423, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27392712

RESUMEN

HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant.


Asunto(s)
Transformación Celular Viral/inmunología , Papillomavirus Humano 16/fisiología , Inmunidad Innata/inmunología , Queratinocitos/inmunología , Queratinocitos/virología , Proteoma/inmunología , Células Cultivadas , Citocinas/inmunología , Regulación Viral de la Expresión Génica/inmunología , Papillomavirus Humano 16/clasificación , Papillomavirus Humano 16/aislamiento & purificación , Humanos , Especificidad de la Especie
7.
Tumour Biol ; 37(10): 14321-14328, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27599983

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer-related mortality worldwide. The heat shock protein 90B1 (HSP90B1) and DNA damage-inducible transcript 3 (DDIT3) are endoplasmic reticulum stress-related proteins that are associated with many malignancies. However, the roles of two proteins on NSCLC remain uncovered. To investigate the correlation between the expressions of HSP90B1 and DDIT3 and clinicopathological parameters of NSCLC as well as the significance of prognosis in NSCLC, a total of 143 NSCLC tissue samples and 45 control tissues samples were assessed. NSCLC patients were followed up from the day of surgery and ended by March 2014. The expressions of HSP90B1 and DDIT3 proteins were detected in all paraffin-embedded biopsy samples by immunochemistry. The HSP90B1 was highly expressed (65.2 %) in the 143 NSCLC patients, and its high expression was correlated with clinical stages (P = 0.001) and lymph node metastasis (P = 0.016). Similarly, DDIT3 was highly expressed in 43 (30.1 %) of 143 NSCLC patients, but only correlated with lymph node metastasis. Furthermore, Log-rank test suggested that high HSP90B1 expression may predict shorter survival (overall survival (OS)) and disease-free survival (DFS) for NSCLC patients. Cox model multivariate analyses indicated that HSP90B1 overexpression was an independent poor prognostic factor for both of OS and DFS. Therefore, HSP90B1 and DDIT3 may the potential biomarker to predict the NSCLC clinicopathological progress. Meanwhile, high HSP90B1 expression means poor prognosis, and HSP90B1 can be a promising prognosis factor for NSCLC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/metabolismo , Recurrencia Local de Neoplasia/patología , Factor de Transcripción CHOP/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/secundario , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundario , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Recurrencia Local de Neoplasia/metabolismo , Estadificación de Neoplasias , Pronóstico , Tasa de Supervivencia
8.
Cytokine ; 73(1): 108-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25743245

RESUMEN

OBJECTIVES: Inflammation is a common feature of epithelial ovarian cancer (EOC), and measurement of plasma markers of inflammation might identify candidate markers for use in screening or presurgical evaluation of patients with adnexal masses. METHODS: Plasma specimens from cohorts of 100 patients with advanced EOC (AJCC Stage III and IV), 50 patients with early stage EOC (Stage I and II), and 50 patients with benign surgical conditions were assayed for concentrations of multiple cytokines, toll-like receptor agonists, and vascular growth factors via ELISA and electrochemiluminescence. Immune proteins were then analyzed for association with EOC. Differences in plasma protein levels between benign, early, and advanced EOC patient groups were assessed with and without adjustment for plasma cancer antigen 125 (CA-125) levels. RESULTS: Out of 23 proteins tested, six-including interferon gamma (IFNγ), interleukin 6 (IL-6), IL-8, IL-10, tumor necrosis factor alpha (TNFα), and placental growth factor (PlGF)-were univariately associated with EOC (all p<0.005), and one-IL-6-was associated with early stage EOC (p<0.0001). Heat shock protein 90kDa beta member 1 (HSP90B1, gp96) was associated with EOC and early stage EOC with borderline statistical significance (p=0.039 and p=0.026, respectively). However, when adjusted for (CA-125), only HSP90B1 independently predicted EOC (p=0.008), as well as early stage EOC (p=0.014). CONCLUSIONS: Multiple plasma cytokines, including IFNγ, IL-6, IL-8, IL-10, TNFα, PlGF, and HSP90B1 are associated with EOC. Of these, HSP90B1 is associated with EOC independent from the biomarker CA-125.


Asunto(s)
Citocinas/sangre , Neoplasias Glandulares y Epiteliales/sangre , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Ováricas/sangre , Neoplasias Ováricas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Antígeno Ca-125/sangre , Carcinoma Epitelial de Ovario , Femenino , Humanos , Inflamación/sangre , Inflamación/patología , Modelos Logísticos , Glicoproteínas de Membrana/sangre , Proteínas de la Membrana/sangre , Persona de Mediana Edad
9.
Int J Med Sci ; 12(3): 256-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798051

RESUMEN

BACKGROUND: Heat shock proteins (HSPs) are overexpressed in human hepatocellular carcinoma (HCC) tissue and correlate with aggressiveness and prognosis of HCC. METHODS: Using the GSE14520 microarray expression profile from Gene Expression Omnibus, we compared HSP gene expression between tumour and non-tumour tissues and correlated this with outcomes in HCC patients. RESULTS: We analysed 220 hepatitis B virus (HBV)-related HCC patients and 25 HSPs in this study. With the exception of HSPA4L, HSPA12A and HSPB8, members of the HSP family, including HSPH1, HSPBP1, HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA4, HSPA5, HSPA8, HSPA9, HSPAA1, HSPAB1, HSPA14, HSPB11, HSPA13, HSP90B1 and HSPBAP1, were all overexpressed in tumour tissues (all P < 0.001). In contrast, HSPB6, HSPB7, HSPA6, HSPB2 and HSPB3 were upregulated in non-tumour tissues (all P < 0.001). Multivariate analysis showed that cirrhosis (HR = 5.282, 95% CI = 1.294-21.555, P = 0.02), Barcelona Clinic liver cancer (BCLC) staging (HR = 2.151, 95% CI = 1.682-2.750, P < 0.001), HSPA12A (HR = 1.042, 95% CI = 1.003-1.082, P = 0.033) and HSP90B1 (HR = 1.001, 95% CI = 1.000-1.001, P = 0.011) were negatively associated with survival of HBV-related HCC patients. Furthermore, advanced BCLC staging (HR = 1.797, 95% CI = 1.439-2.244, P < 0.001) was also associated with earlier recurrence of HCC. The high expression of HSPA4 (HR = 1.002, 95% CI = 1.000-1.004, P = 0.019), HSPA5 (HR = 1.0, 95% CI = 1.0-1.0, P = 0.046) and HSPA6 (HR = 1.008, 95% CI = 1.001-1.015, P = 0.021) was similarly associated with HCC recurrence. CONCLUSIONS: The expression of most HSPs was higher in tumour tissues than in non-tumour tissues. High BCLC staging scores, advanced cirrhosis and the overexpression of HSPA12A and HSP90B1 might be associated with poor survival from HCC, whereas high levels of HSPA4, HSPA5 and HSPA6 might be associated with earlier recurrence of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas del Choque Térmico HSP110/biosíntesis , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Neoplasias Hepáticas/genética , Glicoproteínas de Membrana/biosíntesis , Adulto , Carcinoma Hepatocelular/patología , Chaperón BiP del Retículo Endoplásmico , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Virus de la Hepatitis B/patogenicidad , Humanos , Estimación de Kaplan-Meier , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Masculino , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Resultado del Tratamiento
10.
J Biol Chem ; 288(25): 18243-8, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23671277

RESUMEN

Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and ß2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.


Asunto(s)
Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Sitios de Unión/genética , Antígeno CD11a/química , Antígeno CD11a/genética , Antígenos CD18/química , Antígenos CD18/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Células HCT116 , Humanos , Immunoblotting , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Interferencia de ARN
11.
ACS Nano ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39467079

RESUMEN

Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck, prevalent in regions such as Southern China and Southeast Asia. Radiotherapy serves as the primary clinical treatment for this carcinoma. However, resistance to radiotherapy is a fundamental cause of treatment failure and patient mortality, with the underlying mechanisms yet to be fully elucidated. We identified a recently characterized circular RNA, circADARB1, which is markedly upregulated in NPC tissues and closely associated with poor prognosis and radiotherapy resistance. Both in vitro and in vivo experiments demonstrated that circADARB1 inhibited ferroptosis, thereby inducing radiotherapy resistance in NPC cells. Building on these findings, we synthesized a biomimetic nanomaterial consisting of semiconducting polymer nanoparticles wrapped in cell membranes, designed to deliver both siRNA targeting circADARB1 and iron ions. The application of this nanomaterial not only efficiently suppressed the expression of circADARB1 and boosted intracellular iron concentrations, but also enhanced ferroptosis induced by radiotherapy, improving the radiosensitivity of NPC cells. Furthermore, our study revealed that circADARB1 upregulated the expression of heat shock protein HSP90B1, which repaired misfolded SLC7A11 and GPX4 proteins triggered by radiotherapy, thereby preserving their stability and biological functions. Mechanistically, SLC7A11 facilitated cysteine transportation into cells and glutathione synthesis, while GPX4 employed glutathione to mitigate intracellular lipid peroxidation induced by radiotherapy, shielding cells from oxidative damage and inhibiting ferroptosis, and ultimately leading to radiotherapy resistance in NPC cells. Our investigation elucidates molecular mechanisms with substantial clinical relevance, highlights the promising application prospects of nanotechnology in precision cancer therapy.

12.
Heliyon ; 10(14): e34834, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149033

RESUMEN

Clear Cell Renal Cell Carcinoma (ccRCC), the most prevalent form of renal cell carcinoma (RCC), poses a significant threat to human health due to its rising morbidity and mortality rates. Sunitinib, a pivotal targeted drug for the treatment of ccRCC, presents a significant challenge due to the high susceptibility of ccRCC to resistance. HSP90 inhibitor AUY922 has demonstrated anti-tumor activity in a range of cancer types. However, its efficacy in combination with sunitinib for ccRCC treatment has not been evaluated. In this study, we employed bioinformatics, network pharmacology, and in vitro assays to verify that AUY922 inhibits cell viability, proliferation, and migration of ccRCC cell lines 786-O and ACHN, with IC50s of 91.86 µM for 786-O and 115.5 µM for ACHN. The effect of AUY922 enhancing the inhibitory effect of sunitinib on ccRCC was further confirmed. The CCK-8 assay demonstrated that the IC50 of sunitinib was reduced from 15.10 µM to 11.91 µM for 786-O and from 17.65 µM to 13.66 µM for ACHN, after the combined application of AUY922. The EdU assay and wound healing assay indicated that AUY922 augmented the inhibitory impact of sunitinib on the proliferation and migration of ccRCC cells. Western blot and RT-PCR analyses demonstrated that AUY922 increased the sensitivity of ccRCC cells to sunitinib by targeting the HIF-1α/VEGFA/VEGFR pathway. Our study represents the first investigation into the role and mechanism of AUY922 in enhancing the sensitivity of ccRCC to sunitinib. In conclusion, the findings indicate the potential for AUY922 to enhance the therapeutic efficacy of sunitinib and overcome sunitinib resistance in ccRCC.

13.
Front Cell Dev Biol ; 12: 1375030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665430

RESUMEN

Background: Glioma is the most common cancer of the central nervous system with poor therapeutic response and clinical prognosis. Insulin-like growth factor 1 receptor (IGF-1R) signaling is implicated in tumor development and progression and induces apoptosis of cancer cells following functional inhibition. However, the relationship between the IGF-1R-related signaling pathway genes and glioma prognosis or immunotherapy/chemotherapy is poorly understood. Methods: LASSO-Cox regression was employed to develop a 16-gene risk signature in the TCGA-GBMLGG cohort, and all patients with glioma were divided into low-risk and high-risk subgroups. The relationships between the risk signature and the tumor immune microenvironment (TIME), immunotherapy response, and chemotherapy response were then analyzed. Immunohistochemistry was used to evaluate the HSP90B1 level in clinical glioma tissue. Results: The gene risk signature yielded superior predictive efficacy in prognosis (5-year area under the curve: 0.875) and can therefore serve as an independent prognostic indicator in patients with glioma. The high-risk subgroup exhibited abundant immune infltration and elevated immune checkpoint gene expression within the TIME. Subsequent analysis revealed that patients in the high-risk subgroup benefited more from chemotherapy. Immunohistochemical analysis confirmed that HSP90B1 was overexpressed in glioma, with significantly higher levels observed in glioblastoma than in astrocytoma or oligodendrocytoma. Conclusion: The newly identified 16-gene risk signature demonstrates a robust predictive capacity for glioma prognosis and plays a pivotal role in the TIME, thereby offering valuable insights for the exploration of novel biomarkers and targeted therapeutics.

14.
PeerJ ; 12: e17028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590708

RESUMEN

Background: Autophagy, a crucial cellular mechanism, facilitates the degradation and removal of misfolded proteins and impaired organelles. Recent research has increasingly highlighted the intimate connection between autophagy and heat shock proteins (HSPs) in the context of tumor development. However, the specific role and underlying mechanisms of heat shock protein 90 beta family member 1 (HSP90B1) in modulating autophagy within head and neck squamous cell carcinoma (HNSCC) remain elusive. Methods: Quantitative real-time PCR (qRT-PCR), Western blot (WB), immunohistochemistry (IHC) were used to detect the expression in HNSC cell lines and tissues. The relationship between HSP90B1 and clinicopathologic features was explored based on TCGA (The Cancer Genome Atlas) data and IHC results. The biological functions of HSP90B1 were analyzed through in vitro and in vivo models to evaluate proliferation, migration, invasion, and autophagy. The mechanisms of HSP90B1 were studied using bioinformatics and WB. Results: HSP90B1 was upregulated in HNSC cells and tissues. High HSP90B1 levels were associated with T-stage, M-stage, clinical stage, and poor prognosis in HNSC patients. Functionally, HSP90B1 promotes HNSC cell proliferation, migration, invasion and inhibits apoptosis. We discovered that HSP90B1 obstructs autophagy and advances HNSC progression through the PI3K/Akt/mTOR pathway. Conclusion: Our study demonstrates that HSP90B1 is highly expressed in HNSC. Furthermore, HSP90B1 may regulate autophagy through the PI3K/Akt/mTOR pathway, mediating HNSC cell biological behaviors. These provide new insights into potential biomarkers and targets for HNSC therapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/genética , Autofagia/genética
15.
J Biomed Res ; 37(5): 326-339, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37750323

RESUMEN

Ionizing radiation is a popular and effective treatment option for glioblastoma (GBM). However, resistance to radiation therapy inevitably occurs during treatment. It is urgent to investigate the mechanisms of radioresistance in GBM and to find ways to improve radiosensitivity. Here, we found that heat shock protein 90 beta family member 1 (HSP90B1) was significantly upregulated in radioresistant GBM cell lines. More importantly, HSP90B1 promoted the localization of glucose transporter type 1, a key rate-limiting factor of glycolysis, on the plasma membrane, which in turn enhanced glycolytic activity and subsequently tumor growth and radioresistance of GBM cells. These findings imply that targeting HSP90B1 may effectively improve the efficacy of radiotherapy for GBM patients, a potential new approach to the treatment of glioblastoma.

16.
Aging (Albany NY) ; 15(15): 7408-7423, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37433010

RESUMEN

Patients with advanced bladder cancer gradually become less sensitive to chemotherapeutic agents, leading to tumor recurrence. Initiating the senescence program in solid tumors may be an important means of improving short-term drug sensitivity. The important role of c-Myc in bladder cancer cell senescence was determined using bioinformatics methods. The response to cisplatin chemotherapy in bladder cancer sample was analyzed according to the Genomics of Drug Sensitivity in Cancer database. Cell Counting Kit-8 assay, clone formation assay, and senescence-associated ß-galactosidase staining were used to assess bladder cancer cell growth, senescence, and sensitivity to cisplatin, respectively. Western blot and immunoprecipitation were performed to understand the regulation of p21 by c-Myc/HSP90B1. Bioinformatic analysis showed that c-Myc, a cellular senescence gene, was significantly associated with bladder cancer prognosis and sensitivity to cisplatin chemotherapy. c-Myc and HSP90B1 expression were highly correlated in bladder cancer. Reducing the level of c-Myc significantly inhibited bladder cancer cell proliferation, promoted cellular senescence, and enhanced cisplatin chemosensitivity. Immunoprecipitation assays confirmed that HSP90B1 interacted with c-Myc. Western blot analysis showed that reducing the level of HSP90B1 could redeem the p21 overexpression caused by c-Myc overexpression. Further studies showed that reducing HSP90B1 expression could alleviate the rapid growth and accelerate cellular senescence of bladder cancer cells caused by c-Myc overexpression, and that reducing HSP90B1 levels could also improve cisplatin sensitivity in bladder cancer cells. HSP90B1/c-Myc interaction regulates the p21 signaling pathway, which affects cisplatin chemosensitivity by modulating bladder cancer cell senescence.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Recurrencia Local de Neoplasia/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Proliferación Celular/genética , Senescencia Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
17.
Cell Signal ; 108: 110711, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156452

RESUMEN

Long non-coding RNAs (lncRNAs) have been implicated in gastric cancer (GC) carcinogenesis and progression. However, the role of LINC00501 in GC growth and metastasis remains unclear. In this study, we found that LINC00501 was frequently upregulated in GC cells and tissues and was closely related to adverse GC clinicopathological features. Aberrant overexpression of LINC00501 promoted GC cell proliferation, invasion, and metastasis both in vitro and in vivo. Mechanistically, LINC00501 stabilized client protein STAT3 from deubiquitylation by directly interacting with cancer chaperone protein HSP90B1. Furthermore, the LINC00501-STAT3 axis modulated GC cell proliferation and metastasis. In turn, STAT3 bound directly to the LINC00501 promoter and positively activated LINC00501 expression, thus forming a positive feedback loop, thereby accelerating tumor growth, invasiveness, and metastasis. In addition, LINC00501 expression was positively correlated with STAT3 and p-STAT3 protein expression levels in gastric clinical samples. Our results reveal that LINC00501 acts as an oncogenic lncRNA and that the LINC00501-HSP90B1-STAT3 positive feedback loop contributes to GC development and progression, suggesting that LINC00501 may be a novel potential biomarker and treatment target for GC.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/patología
18.
Biomolecules ; 12(10)2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36291587

RESUMEN

BACKGROUND: HSP90B1, a member of the heat-shock protein 90 family, plays a vital role as a molecular chaperone for oncogenes and stimulates tumour growth. However, its role in various cancers remains unexplored. METHODS: Using the cancer genome atlas, gene expression omnibus the Human Protein Atlas databases and various other bioinformatic tools, this study investigated the involvement of HSP90B1 in 33 different tumour types. RESULTS: The over-expression of HSP90B1 generally predicted poor overall survival and disease-free survival for patients with tumours, such as adrenocortical carcinoma, bladder urothelial carcinoma, kidney renal papillary cell carcinoma, and lung adenocarcinoma. In this study, HSP90B1 was highly expressed in the majority of tumours. A comparison was made between the phosphorylation of HSP90B1 in normal and primary tumour tissues, and putative functional mechanisms in HSP90B1-mediated oncogenesis were investigated. Additionally, the mutation burden of HSP90B1 in cancer was evaluated along with the survival rate of patients with cancer patients. CONCLUSION: This first pan-cancer investigation reveals the oncogenic functions of HSP90B1 in various cancers.


Asunto(s)
Carcinoma de Células Renales , Carcinoma de Células Transicionales , Neoplasias Renales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Proteínas HSP90 de Choque Térmico/genética , Chaperonas Moleculares
19.
Front Genet ; 13: 965100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186448

RESUMEN

Background: Abnormal activation of endoplasmic reticulum (ER) stress sensors and their downstream signalling pathways is a key regulator of tumour growth, tumour metastasis and the response to chemotherapy, targeted therapy and immunotherapy. However, the study of ER stress on the immune microenvironment of bladder urothelial carcinoma (BLCA) is still insufficient. Methods: Firstly, 23 ER stress genes were selected to analyse their expression differences and prognostic value in BLCA based on the existing BLCA genome atlas data. According to the expression level of ER stress-related genes in BLCA, two independent clusters were identified using consensus cluster analysis. Subsequently, the correlation between these two clusters in terms of the immune microenvironment and their prognostic value was analysed. Finally, we analysed the prognostic value of the key ER stress gene HSP90B1 in BLCA and its corresponding mechanism that affects the immune microenvironment. Results: Consensus clustering showed a worse prognosis and higher expression of immunoassay site-related genes (HAVCR2, PDCD1, CTLA4, CD274, LAG3, TIGIT and PDCD1LG2) in cluster 1 compared with cluster 2. Additionally, both TIMER and CIBERSORT algorithms showed that the expression of immune infiltrating cells in cluster 1 was significantly higher than that in cluster 2. Subsequently, HSP90B1 was identified as a key ER stress gene in BLCA, and its high expression indicated poor prognosis and was closely related to PD1. We also analysed the correlation between HSP90B1 expression and immune-infiltrating cell related biomarkers, which showed positive results. Finally, we verified the prognostic value of HSP90B1 in BLCA using an immunohistochemical assay in a tissue microarray of 100 patients with BLCA, validating the potential of HSP90B1 as a prognostic biomarker in patients with BLCA. Conclusion: Our work reveals that ER stress genes play a crucial role in the BLCA immunological milieu, and HSP90B1 is a potential prognostic biomarker and therapeutic target for cancer immunotherapy.

20.
Front Cell Infect Microbiol ; 12: 899546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677655

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has currently infected over 430 million individuals worldwide. With the variant strains of SARS-CoV-2 emerging, a region of high mutation rates in ORF8 was identified during the early pandemic, which resulted in a mutation from leucine (L) to serine (S) at amino acid 84. A typical feature of ORF8 is the immune evasion by suppressing interferon response; however, the mechanisms by which the two variants of ORF8 antagonize the type I interferon (IFN-I) pathway have not yet been clearly investigated. Here, we reported that SARS-CoV-2 ORF8L and ORF8S with no difference inhibit the production of IFN-ß, MDA5, RIG-I, ISG15, ISG56, IRF3, and other IFN-related genes induced by poly(I:C). In addition, both ORF8L and ORF8S proteins were found to suppress the nuclear translocation of IRF3. Mechanistically, the SARS-CoV-2 ORF8 protein interacts with HSP90B1, which was later investigated to induce the production of IFN-ß and IRF3. Taken together, these results indicate that SARS-CoV-2 ORF8 antagonizes the RIG-I/MDA-5 signaling pathway by targeting HSP90B1, which subsequently exhibits an inhibitory effect on the production of IFN-I. These functions appeared not to be influenced by the genotypes of ORF8L and ORF8S. Our study provides an explanation for the antiviral immune suppression of SARS-CoV-2 and suggests implications for the pathogenic mechanism and treatment of COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Glicoproteínas de Membrana , Proteínas Virales , COVID-19/virología , Humanos , Evasión Inmune , Interferón Tipo I/metabolismo , Interferón beta/genética , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , Transducción de Señal , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA