Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131931

RESUMEN

A network of tetrahedral vertices can fill three-dimensional (3D) spaces in a beautiful and isotropic manner, which is found as diamonds with sp3-hybridized carbon atoms. Although a network of trigonal vertices (i.e., another form of carbon atoms with sp2-hybridization) naturally results in a lower-dimensional two-dimensional network of graphenes, an isotropic 3D arrangement of trigonal vertices has been of theoretical and mathematical interest, which has materialized as a proposal of a "diamond twin." We herein report the synthesis and optical resolution of a minimal cage of a chiral diamond-twin network. With triangular phenine units at 14 vertices, triply fused decagonal rings were assembled by forming 15 biaryl edges via coupling. A unique chirality of the network has been disclosed with the minimal cage, which may stimulate explorations of chiral carbonaceous materials.

2.
Small ; : e2308558, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412418

RESUMEN

Recent progress of Raman spectroscopy on carbon nanotubes and 2D materials is reviewed as a topical review. The Raman tensor with complex values is related to the chiral 1D/2D materials without mirror symmetry for the mirror in the propagating direction of light, such as chiral carbon nanotube and black phosphorus. The phenomenon of complex Raman tensor is observed by the asymmetric polar plot of helicity-dependent Raman spectroscopy using incident circularly-polarized lights. First-principles calculations of resonant Raman spectra directly give the complex Raman tensor that explains helicity-dependent Raman spectra and laser-energy-dependent relative intensities of Raman spectra. In deep-ultraviolet (DUV) Raman spectroscopy with 266 nm laser, since the energy of the photon is large compared with the energy gap, the first-order and double resonant Raman processes occur in general k points in the Brillouin zone. First-principles calculation is necessary to understand the DUV Raman spectra and the origin of double-resonance Raman spectra. Asymmetric line shapes appear for the G band of graphene for 266 nm laser and in-plane Raman mode of WS2 for 532 nm laser, while these spectra show symmetric line shapes for other laser excitation. The interference effect on the asymmetric line shape is discussed by fitting the spectra to the Breit-Wigner-Fano line shapes.

3.
Chembiochem ; 25(7): e202300747, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38191871

RESUMEN

Peptide side chain stapling has been proven to be an effective strategy for fine-tuning peptide properties. This innovative approach leads to the creation of stapled peptides characterized by stabilized α-helical conformations, enhanced protein-binding affinity, improved cell permeability, superior enzymatic stability, and numerous other advantages. Extensive research has explored the impact of various stapling bridges on the properties of these peptides, with limited investigation into the influence of bridge chirality, until very recently. In this concise review, we provide a brief overview of the current state of knowledge regarding the stereochemistry within the bridges of stapled peptides, offering insights into the potential applications of chiral bridges in the design and development of stapled peptides.


Asunto(s)
Péptidos , Péptidos/química , Unión Proteica , Conformación Proteica en Hélice alfa
4.
J Synchrotron Radiat ; 31(Pt 3): 493-507, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597745

RESUMEN

Calculations and measurements of polarization-dependent soft X-ray scattering intensity are presented during a magnetic hysteresis cycle. It is confirmed that the dependence of the intensity on the magnetic moment can be linear, quadratic or a combination of both, depending on the polarization of the incident X-ray beam and the direction of the magnetic moment. With a linearly polarized beam, the scattered intensity will have a purely quadratic dependence on the magnetic moment when the magnetic moment is parallel to the scattering plane. However, with the magnetic moment perpendicular to the scattering plane, there is also a linear component. This means that, when measuring the hysteresis with linear polarization during a hysteresis cycle, the intensity will be an even function of the applied field when the change in the magnetic moment (and field) is confined within the scattering plane but becomes more complicated when the magnetic moment is out of the scattering plane. Furthermore, with circular polarization, the dependence of the scattered intensity on the moment is a combination of linear and quadratic. With the moment parallel to the scattering plane, the linear component changes with the helicity of the incident beam. Surprisingly, in stark contrast to absorption studies, even when the magnetic moment is perpendicular to the scattering plane there is still a dependence on the moment with a linear component. This linear component is completely independent of the helicity of the beam, meaning that the hysteresis loops will not be inverted with helicity.

5.
Chemistry ; 30(43): e202401353, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818544

RESUMEN

Here is described the synthesis and characterization of a stable hydrocarbon radical, peri-benzo-diindenotetracenyl, with a helical structure. Although the helical π-radical has no peripheral substituents, it was stable in the solid and solutions. According to the X-ray diffraction analysis and quantum chemical calculations, the radical was best described as an allyl radical fused by five Clar's sextets. The optically resolved enantiomers exhibited mirror image CD spectra with |gCD| of 2.4×10-4 at 522 nm. The racemization barrier was determined to be 95.9 kJ/mol at 298 K, which is compatible with that of [5]helicene (108 kJ/mol).

6.
Chemistry ; 30(55): e202402470, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39073203

RESUMEN

This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2 %) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55 %). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16 % yield.

7.
Nano Lett ; 23(11): 5101-5107, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37246948

RESUMEN

A colloidal suspension of photonic nanostructures exhibiting optical magnetism is dubbed an optical metafluid. A promising constituent of a metafluid is a nanosphere of high-refractive index dielectrics having the magnetic-type Mie resonances in the optical frequency. At the Kerker conditions, a dielectric nanosphere satisfies the electromagnetic duality symmetry condition and preserves the handedness of circularly polarized incident light. A metafluid of such dielectric nanospheres thus preserves the helicity of incident light. In the helicity-preserving metafluid, the local chiral fields around the constituent nanospheres are strongly enhanced, which improves the sensitivity of enantiomer-selective chiral molecular sensing. Here, we experimentally demonstrate that a solution of crystalline silicon nanospheres can be "dual" and "anti-dual" metafluids. We first theoretically address the electromagnetic duality symmetry of single silicon nanospheres. We then produce solutions of silicon nanospheres with narrow size distributions and experimentally demonstrate the "dual" and "anti-dual" behaviors.

8.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732028

RESUMEN

The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.


Asunto(s)
Aminoácidos , Compuestos Ferrosos , Metalocenos , Péptidos , Compuestos Ferrosos/química , Aminoácidos/química , Metalocenos/química , Péptidos/química , Enlace de Hidrógeno , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 63(5): e202315686, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085492

RESUMEN

Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.

10.
Angew Chem Int Ed Engl ; 63(3): e202316385, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38010600

RESUMEN

The diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3-diaminopyridine-mediated supramolecular templating method, which facilitates the prefabrication of helical imine-linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine-linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine-linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical ß-ketoenamine-linked and hydrazone-linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA