Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1860(5): 1105-1113, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29391167

RESUMEN

The ß-secretase (BACE1) features a unique sulfur rich motif (M462xxxC466xxxM470xxxC474xxxC478) in its transmembrane helix (BACE1-TM) which is characteristic for proteins involved in copper ion storage and transport. While this motif has been shown to promote BACE1-TM trimerization and binding of copper ions in vitro, the structural basis for the interaction of copper ions with the BACE1-TM is still not well understood. Using molecular dynamics (MD) simulations, we show that membrane embedded BACE1-TMs adopt a flexible trimeric structure that binds and conducts copper ions through variable coordination. In coarse-grained (CG) MD simulations, the spontaneous assembly of BACE1-TMs trimers results in a right-handed helix packing arrangement. In subsequent atomistic MD simulations the sulfur rich motif defines characteristic copper ion coordination sites along a constricted partially solvated axial pore. Sliding and tilting of BACE1-TMs along smooth A459xxxA463/464xxA467 surfaces, facilitated by a central P472 induced kink, enables copper ions to alternate between different coordination sites, including the prominent C466 and M470. We shed light into the structural arrangement of BACE1-TM trimers and propose a mechanism for copper ion conduction that might also apply to other proteins involved in metal ion transport.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Cobre/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Secuencias Hélice-Asa-Hélice/genética , Humanos , Transporte Iónico/genética , Iones/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética
2.
Proteins ; 85(7): 1212-1221, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28263405

RESUMEN

One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α-helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue-residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best-sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best-sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix-helix packing. Proteins 2017; 85:1212-1221. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Aminoácidos/química , Proteínas de la Membrana/química , Benchmarking , Sitios de Unión , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína
3.
J Comput Aided Mol Des ; 31(9): 855-865, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28864946

RESUMEN

[Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.


Asunto(s)
Algoritmos , Proteínas de la Membrana/química , Modelos Moleculares , Diseño de Fármacos , Humanos , Conformación Molecular , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad Cuantitativa
4.
Cell Stress ; 1(2): 90-106, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31225439

RESUMEN

Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-dimers with a wide range of hydrophobic lengths. Hydrophobic mismatch and its effects on dimerization are found to be considerably weaker than those previously observed in model membranes, or under in vitro conditions, indicating that biological membranes (particularly eukaryotic membranes) can adapt to structural deformations through compensatory mechanisms that emerge from their complex structure and composition to alleviate membrane stress. Results based on atomistic simulations support this view, as they revealed that Glycophorin A dimers remain stable, despite of poor hydrophobic match, using mechanisms based on dimer tilting or local membrane thickness perturbations. Furthermore, hetero-dimers with large length disparity between their monomers are also tolerated in cells, and the conclusions that one can draw are essentially similar to those found with homo-dimers. However, large differences between transmembrane helices length hinder the monomer/dimer equilibrium, confirming that, the hydrophobic mismatch has, nonetheless, biologically relevant effects on helix packing in vivo.

5.
Viruses ; 7(7): 3462-82, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26131957

RESUMEN

Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.


Asunto(s)
Membrana Celular/virología , Pliegue de Proteína , Proteínas Virales/química , Proteínas Virales/metabolismo , Virosis/virología , Virus/metabolismo , Animales , Humanos , Proteínas Virales/genética , Virus/química , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA