Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.385
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482082

RESUMEN

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Asunto(s)
Ciclo Celular , Reactivos de Enlaces Cruzados/química , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Replicación Viral/fisiología , Secuencia de Aminoácidos , Linfocitos B/metabolismo , Línea Celular , Aductos de ADN/metabolismo , Replicación del ADN , Endonucleasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Mutación/genética , Unión Proteica , Recombinación Genética/genética , Tirosina/metabolismo
2.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
3.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479361

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Asunto(s)
Bencenoacetamidas , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Piperidonas , Animales , Ratones , Proteínas Virales/metabolismo , Glicoproteínas/metabolismo , Anticuerpos Antivirales
4.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36306784

RESUMEN

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Cricetinae , Ratones , Animales , Humanos , Proteínas del Envoltorio Viral , Cricetulus , Glicoproteínas de Membrana , Células CHO
5.
Mol Cell ; 83(13): 2367-2386.e15, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311461

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis, triggers multiple sclerosis, and is associated with 200,000 cancers/year. EBV colonizes the human B cell compartment and periodically reactivates, inducing expression of 80 viral proteins. However, much remains unknown about how EBV remodels host cells and dismantles key antiviral responses. We therefore created a map of EBV-host and EBV-EBV interactions in B cells undergoing EBV replication, uncovering conserved herpesvirus versus EBV-specific host cell targets. The EBV-encoded G-protein-coupled receptor BILF1 associated with MAVS and the UFM1 E3 ligase UFL1. Although UFMylation of 14-3-3 proteins drives RIG-I/MAVS signaling, BILF1-directed MAVS UFMylation instead triggered MAVS packaging into mitochondrial-derived vesicles and lysosomal proteolysis. In the absence of BILF1, EBV replication activated the NLRP3 inflammasome, which impaired viral replication and triggered pyroptosis. Our results provide a viral protein interaction network resource, reveal a UFM1-dependent pathway for selective degradation of mitochondrial cargo, and highlight BILF1 as a novel therapeutic target.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mapas de Interacción de Proteínas
6.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32277911

RESUMEN

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Asunto(s)
Fibroblastos/inmunología , Interferones/inmunología , Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/inmunología , Canales Aniónicos Dependientes del Voltaje/inmunología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Efecto Espectador , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Interferones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
7.
Mol Cell ; 81(13): 2823-2837.e9, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015248

RESUMEN

DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.


Asunto(s)
Alphaherpesvirinae , Betaherpesvirinae , ADN , Infecciones por Herpesviridae , Evasión Inmune , Nucleotidiltransferasas , Proteínas Estructurales Virales , Alphaherpesvirinae/química , Alphaherpesvirinae/genética , Alphaherpesvirinae/inmunología , Betaherpesvirinae/química , Betaherpesvirinae/genética , Betaherpesvirinae/inmunología , ADN/química , ADN/genética , ADN/inmunología , Células HEK293 , Células HeLa , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Humanos , Inmunidad Innata , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología
8.
Mol Cell ; 78(4): 653-669.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315601

RESUMEN

Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.


Asunto(s)
Linfoma de Burkitt/patología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Viral , Latencia del Virus , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/virología , Proliferación Celular , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Femenino , Regulación Viral de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442151

RESUMEN

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Degrones , Herpesviridae , Presentación de Antígeno , Citomegalovirus , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Transporte de Membrana , Péptidos , Ubiquitina-Proteína Ligasas/genética , Herpesviridae/fisiología
10.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279649

RESUMEN

The identification of human-herpesvirus protein-protein interactions (PPIs) is an essential and important entry point to understand the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes. The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.


Asunto(s)
Benchmarking , Citomegalovirus , Humanos , Aprendizaje Automático , Procesamiento de Lenguaje Natural
11.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177923

RESUMEN

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Asunto(s)
Herpesvirus Humano 6 , Proteínas Inmediatas-Precoces , Infecciones por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Infecciones por Roseolovirus/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Integración Viral , Inestabilidad Genómica , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
12.
Semin Immunol ; 60: 101652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36162228

RESUMEN

The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Neoplasias , Adulto , Humanos , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Células Asesinas Naturales
13.
Proc Natl Acad Sci U S A ; 120(6): e2212864120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724259

RESUMEN

Non-coding RNAs (ncRNAs) play important roles in host-pathogen interactions; oncogenic viruses like Kaposi's sarcoma herpesvirus (KSHV) employ ncRNAs to establish a latent reservoir and persist for the life of the host. We previously reported that KSHV infection alters a novel class of RNA, circular RNAs (circRNAs). CircRNAs are alternative splicing isoforms and regulate gene expression, but their importance in infection is largely unknown. Here, we showed that a human circRNA, hsa_circ_0001400, is induced by various pathogenic viruses, namely KSHV, Epstein-Barr virus, and human cytomegalovirus. The induction of circRNAs including circ_0001400 by KSHV is co-transcriptionally regulated, likely at splicing. Consistently, screening for circ_0001400-interacting proteins identified a splicing factor, PNISR. Functional studies using infected primary endothelial cells revealed that circ_0001400 inhibits KSHV lytic transcription and virus production. Simultaneously, the circRNA promoted cell cycle, inhibited apoptosis, and induced immune genes. RNA-pull down assays identified transcripts interacting with circ_0001400, including TTI1, which is a component of the pro-growth mTOR complexes. We thus identified a circRNA that is pro-growth and anti-lytic replication. These results support a model in which KSHV induces circ_0001400 expression to maintain latency. Since circ_0001400 is induced by multiple viruses, this novel viral strategy may be widely employed by other viruses.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Infección Latente , Virus ARN , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , ARN Circular/genética , Sarcoma de Kaposi/genética , Células Endoteliales , Latencia del Virus/genética , Herpesvirus Humano 4/genética , ARN Viral/genética , ARN no Traducido , Virus ARN/genética , Replicación Viral/genética , Regulación Viral de la Expresión Génica
14.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917666

RESUMEN

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Humanos , Adenosina Trifosfatasas/metabolismo , Gammaherpesvirinae/genética , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Latencia del Virus/genética , Replicación Viral
15.
J Biol Chem ; : 107645, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39127175

RESUMEN

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNß induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNß transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor IRF3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits binding of IRF3 to the IFNß promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.

16.
J Virol ; 98(5): e0049324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38578092

RESUMEN

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por Herpesviridae , Interferón gamma , Células Asesinas Naturales , Receptores de Interferón , Rhadinovirus , Animales , Linfocitos T CD4-Positivos/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Células Asesinas Naturales/inmunología , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Rhadinovirus/inmunología , Ratones Endogámicos C57BL , Receptor de Interferón gamma , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/virología , Linfocitos T CD8-positivos/inmunología , Antígeno CD11c/metabolismo , Antígeno CD11c/inmunología , Pulmón/inmunología , Pulmón/virología
17.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767375

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas del Envoltorio Viral , Proteínas Virales , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Animales , Ratones , Proteínas Virales/metabolismo , Proteínas Virales/genética , Sarcoma de Kaposi/virología , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Enfermedad de Castleman/virología , Enfermedad de Castleman/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliales/virología
18.
J Virol ; 98(7): e0056124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869285

RESUMEN

Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Suido 1 , Neuronas , Activación Viral , Latencia del Virus , Animales , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Neuronas/virología , Neuronas/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/genética , Silenciador del Gen , Ratas , Axones/virología , Axones/metabolismo , Dependovirus/genética , Dependovirus/fisiología , Seudorrabia/virología , Seudorrabia/metabolismo , Células Cultivadas , Herpes Simple/virología , Herpes Simple/metabolismo
19.
J Virol ; : e0100024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078391

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) ORF34 plays a significant role as a component of the viral pre-initiation complex (vPIC), which is indispensable for late gene expression across beta- and gammaherpesviruses. Although the key role of ORF34 within the vPIC and its function as a hub protein have been recognized, further clarification regarding its specific contribution to vPIC functionality and interactions with other components is required. This study employed a deep learning algorithm-assisted structural model of ORF34, revealing highly conserved amino acid residues across human beta- and gammaherpesviruses localized in structured domains. Thus, we engineered ORF34 alanine-scanning mutants by substituting conserved residues with alanine. These mutants were evaluated for their ability to interact with other vPIC factors and restore viral production in cells harboring the ORF34-deficient KSHV-BAC. Our experimental results highlight the crucial role of the four cysteine residues conserved in ORF34: a tetrahedral arrangement consisting of a pair of C-Xn-C consensus motifs. This suggests the potential incorporation of metal cations in interacting with ORF24 and ORF66 vPIC components, facilitating late gene transcription, and promoting overall virus production by capturing metal cations. In summary, our findings underline the essential role of conserved cysteines in KSHV ORF34 for effective vPIC assembly and viral replication, thereby enhancing our understanding of the complex interplay between the vPIC components. IMPORTANCE: The initiation of late gene transcription is universally conserved across the beta- and gammaherpesvirus families. This process employs a viral pre-initiation complex (vPIC), which is analogous to a cellular PIC. Although KSHV ORF34 is a critical factor for viral replication and is a component of the vPIC, the specifics of vPIC formation and the essential domains crucial for its function remain unclear. Structural predictions suggest that the four conserved cysteines (C170, C175, C256, and C259) form a tetrahedron that coordinates the metal cation. We investigated the role of these conserved amino acids in interactions with other vPIC components, late gene expression, and virus production to demonstrate for the first time that these cysteines are pivotal for such functions. This discovery not only deepens our comprehensive understanding of ORF34 and vPIC dynamics but also lays the groundwork for more detailed studies on herpesvirus replication mechanisms in future research.

20.
J Virol ; 98(3): e0139223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38363111

RESUMEN

Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.


Asunto(s)
Anseriformes , Factor B de Elongación Transcripcional Positiva , Proteínas de Unión al ARN , Factores de Transcripción , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transcripción Viral , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA