Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(18): 8794-8800, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37487142

RESUMEN

Carbon dots (CDs) are promising nanomaterials for next-generation lighting and displays due to their tunable bandgap, high photoluminescence quantum yield (PLQY), and high stability. However, the exciton utilization efficiency (EUE) of CD-based films can only reach 25%, fundamentally limiting their application in electroluminescent light-emitting diodes (LEDs). Improving the EUE is therefore of great significance. Herein, we developed composite films containing CDs and poly(9-vinylcarbazole) (PVK). The films were then used to construct a series of high-performance electroluminescent LEDs with tunable emission colors covering the blue to green regions as the concentration of CDs in the films increased, delivering a maximum external quantum efficiency and current efficiency of 2.62% and 5.11 cd/A, respectively. Theoretical calculations and experiments established that the excellent performance at low film PLQY was due to a hot exciton effect in the CDs, achieving nearly 100% EUE. This work provides new design strategies toward high-performance CD-based electroluminescent LEDs.

2.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668100

RESUMEN

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

3.
Adv Mater ; 35(39): e2303304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354127

RESUMEN

Luminescent materials possessing a "hot-exciton" mechanism and aggregation-induced emission (AIE) qualities are well-suited for use as emitting materials in nondoped organic light-emitting diodes (OLEDs), particularly in deep-red regions where their ground state and singlet excited state surfaces are in proximity, leading to the formation of multiple nonradiative channels. However, designing molecules that artificially combine the hot-exciton mechanism and AIE attributes remains a formidable task. In this study, a versatile strategy is presented to achieve hot-exciton fluorescence with AIE property by increasing the first singlet excited (S1 ) state through modulation of the conjugation length of the newly created acceptor unit, matching the energy level of high-lying triplet (Tn ) states, and enhancing exciton utilization efficiency by employing suitable donor moieties. This approach reduces the aggregation-caused quenching (ACQ) in the aggregate state, resulting in the proof-of-concept emitter DT-IPD, which produces an unprecedented external quantum efficiency (EQE) of 12.2% and Commission Internationale de I'Eclairage (CIE) coordinates of (0.69, 0.30) in a deep-red non-doped OLED at 685 nm, representing the highest performance among all deep-red OLEDs based on materials with hot-exciton mechanisms. This work provides novel insights into the design of more efficient hot-exciton emitters with AIE properties.

4.
Sci Bull (Beijing) ; 66(20): 2090-2098, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654267

RESUMEN

Achieving high-efficiency deep blue emitter with CIEy < 0.06 (CIE, Commission Internationale de L'Eclairage) and external quantum efficiency (EQE) >10% has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes (OLEDs). Here, we report the rational design and synthesis of two new deep blue luminogens: 4-(10-(4'-(9H-carbazol-9-yl)-2,5-dimethyl-[1,1'-biphenyl]-4-yl)anthracen-9-yl)benzonitrile (2M-ph-pCzAnBzt) and 4-(10-(4-(9H-carbazol-9-yl)-2,5-dimethylphenyl)anthracen-9-yl)benzonitrile (2M-pCzAnBzt). In particular, 2M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIEx,y (0.151, 0.057). The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion, which are supported by analysis of theoretical calculation, triplet sensitization experiments, as well as nanosecond transient absorption spectroscopy. This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA