Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 75: 49-69, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038159

RESUMEN

The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos
2.
World J Microbiol Biotechnol ; 40(9): 261, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972914

RESUMEN

The fecal microbiota of two healthy adults was cultivated in a medium containing commercial fructooligosaccharides [FOS; 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4)]. Initially, the proportions of lactobacilli in the two feces samples were only 0.42% and 0.17%; however, they significantly increased to 7.2% and 4.8%, respectively, after cultivation on FOS. Most FOS-utilizing isolates could utilize only GF2; however, Lacticaseibacillus paracasei strain Lp02 could fully consume GF3 and GF4 too. The FOS operon (fosRABCDXE) was present in Lc. paracasei Lp02 and another Lc. paracasei strain, KCTC 3510T, but fosE was only partially present in the non-FOS-degrading strain KCTC 3510T. In addition, the top six upregulated genes in the presence of FOS were fosABCDXE, particularly fosE. FosE is a ß-fructosidase that hydrolyzes both sucrose and all three FOS. Finally, a genome-based analysis suggested that fosE is mainly observed in Lc. paracasei, and only 13.5% (61/452) of their reported genomes were confirmed to include it. In conclusion, FosE allows the utilization of FOS, including GF3 and GF4 as well as GF2, by some Lc. paracasei strains, suggesting that this species plays a pivotal role in FOS utilization in the human gut.


Asunto(s)
Heces , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Oligosacáridos , beta-Fructofuranosidasa , Humanos , Oligosacáridos/metabolismo , Heces/microbiología , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/genética , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/genética , Adulto , Operón , Trisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
J Bacteriol ; 205(11): e0021823, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37874167

RESUMEN

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Asunto(s)
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polisacáridos/metabolismo , Bacteroides/genética
4.
J Biol Chem ; 298(6): 102049, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35597281

RESUMEN

Not all starches in the human diet are created equal: "resistant starches" are consolidated aggregates of the α-glucan polysaccharides amylose and amylopectin, which escape digestion by salivary and pancreatic amylases. Upon reaching the large intestine, resistant starches become fodder for members of the human gut microbiota, impacting the metabolism of both the symbionts and the host. In a recent study, Koropatkin et al. provided new molecular insight into how a keystone bacterium in the human gut microbiota adheres to resistant starches as a prelude to their breakdown and fermentation.


Asunto(s)
Microbioma Gastrointestinal , Almidón , Amilopectina/metabolismo , Amilosa/metabolismo , Glucanos , Humanos , Almidón/metabolismo , alfa-Amilasas/metabolismo
5.
Infect Immun ; 91(10): e0043722, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37750713

RESUMEN

There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedades Neurodegenerativas , Femenino , Humanos , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-37417270

RESUMEN

Two novel bacterial isolates were cultured from faecal samples of patients attending the Breast Care clinic at the Norwich and Norfolk University Hospital. Strain LH1062T was isolated from a 58-year-old female diagnosed with invasive adenocarcinoma with ductal carcinoma in situ. Strain LH1063T was isolated from a healthy 51-year-old female. Isolate LH1062T was predicted to be a potential novel genus most closely related to Coprobacillus, whilst LH1063T was predicted to be a novel species belonging to Coprobacter. Both strains were characterized by polyphasic approaches including 16S rRNA gene analysis, core-genome analysis, average nucleotide identity (ANI) comparisons and phenotypic analysis. Initial screening of the 16S rRNA gene of LH1062T returned a nucleotide identity of 93.4 % to Longibaculum muris. For LH1063T, nucleotide identity was a 92.6 % to Coprobacter secundus. Further investigations showed that LH1062T had a genome size of 2.9 Mb and G+C content of 31.3 mol %. LH1063T had a genome size of 3.3Mb and G+C content of 39.2 mol %. Digital DNA-DNA hybridization (dDDH) and ANI values of LH1062T with its closest relative, Coprobacillus cateniformis JCM 10604T, were 20.9 and 79.54 %, respectively. For LH1063T, the dDDH and ANI values with its closest relative, Coprobacter secundus 177T, were 19.3 and 77.81 %, respectively. Phenotypic testing confirmed that LH1062T could not be matched to a known validly published isolate in any database; thereby indicating a novel genus for which the name Allocoprobacillus gen. nov. is now proposed with LH1062T (=DSM 114537T=NCTC 14686T) being the type strain of the proposed novel species Allocoprobacillus halotolerans sp. nov. Strain LH1063T (=DSM 114538T=NCTC 14698T) fits within the genus Coprobacter and, it being the third species within this genus, the name Coprobacter tertius sp. nov. is proposed.


Asunto(s)
Ácidos Grasos , Microbioma Gastrointestinal , Humanos , Persona de Mediana Edad , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Composición de Base , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Clostridiaceae/genética , Hibridación de Ácido Nucleico
7.
J Integr Neurosci ; 22(2): 38, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992601

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disease that tends to occur in the elderly. The main symptom is hypomnesia. More and more older people are suffering from this disease worldwide. By 2050, 152 million people worldwide are expected to have AD. It is thought that the aggregation of amyloid-beta peptides and hyper-phosphorylated tau tangles contribute to AD. The microbiota-gut-brain (MGB) axis appears as a new concept. The MGB axis is a collection of microbial molecules produced in the gastrointestinal tract that influence the physiological function of the brain. In this review, we discuss how the gut microbiota (GM) and its metabolites affect AD in different ways. Dysregulation of the GM has been shown to be involved in various mechanisms involved in memory and learning functions. We review the current literature on the role of the entero-brain axis in the pathogenesis of AD and its potential role as a future therapeutic target in the treatment and/or prevention of AD.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Encéfalo , Péptidos beta-Amiloides/metabolismo
8.
Molecules ; 28(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37570841

RESUMEN

Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.


Asunto(s)
Camellia sinensis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografía Liquida , Antioxidantes/farmacología , Antioxidantes/análisis , Té/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Heces/química , Espectrometría de Masas en Tándem , Camellia sinensis/genética
9.
J Sci Food Agric ; 103(14): 7241-7250, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37358876

RESUMEN

BACKGROUND: Astragali Radix (also known as Astragulus) is a traditional medicinal and edible homologous plant for tonifying Qi. Honey-processed Astragalus is a dosage form of Astragali Radix processed with honey, which exhibited better efficacy of tonifying Qi than the raw product. Polysaccharides are their main active components. RESULTS: APS2a and HAPS2a were initially isolated from Astragulus and honey-processed Astragulus. Both of them are highly branched acidic heteropolysaccharides containing ɑ-configuration and ß-configuration glycosidic bonds. The molecular weight and the molecular dimension of HAPS2a decreased and the GalA contained in APS2a was converted to Gal in HAPS2a. The α-configuration galactose residue 1,3,4-α-Galp in the backbone of APS2a was converted to the corresponding ß-configuration galactose residue 1,3,4-ß-Galp in the backbone of HAPS2a and the uronic acid residue T-α-GalpA in the sidechain of APS2a was converted to the corresponding neutral residue T-α-Galp in the side chain of HAPS2a. Bioactivity results showed that HAPS2a had better probiotic effects on Bacteroides ovatus, Bacteroides thetaiotaomicron, Bifidobacterium longum and Lactobacillus rhamnosus strains than APS2a. After degradation, the molecular weights of HAPS2a and APS2a decreased with the changes in their monosaccharide composition. The contents of total short-chain fatty acids (SCFAs) and other organic acids in HAPS2a group were higher than APS2a group. CONCLUSIONS: Two novel high-molecular-weight polysaccharides named APS2a and HAPS2a had different probiotic activities in vitro, which might be due to their structural differences before and after honey processing. Both of them might be possibly used as an immunopotentiator in healthy foods or dietary supplement. © 2023 Society of Chemical Industry.


Asunto(s)
Planta del Astrágalo , Microbioma Gastrointestinal , Miel , Humanos , Galactosa , Miel/análisis , Polisacáridos/química , Planta del Astrágalo/química
10.
J Biol Chem ; 296: 100415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33587952

RESUMEN

Complex glycans that evade our digestive system are major nutrients that feed the human gut microbiota (HGM). The prevalence of Bacteroidetes in the HGM of populations worldwide is engendered by the evolution of polysaccharide utilization loci (PULs), which encode concerted protein systems to utilize the myriad complex glycans in our diets. Despite their crucial roles in glycan recognition and transport, cell-surface glycan-binding proteins (SGBPs) remained understudied cogs in the PUL machinery. Here, we report the structural and biochemical characterization of a suite of SGBP-A and SGBP-B structures from three syntenic ß(1,3)-glucan utilization loci (1,3GULs) from Bacteroides thetaiotaomicron (Bt), Bacteroides uniformis (Bu), and B. fluxus (Bf), which have varying specificities for distinct ß-glucans. Ligand complexes provide definitive insight into ß(1,3)-glucan selectivity in the HGM, including structural features enabling dual ß(1,3)-glucan/mixed-linkage ß(1,3)/ß(1,4)-glucan-binding capability in some orthologs. The tertiary structural conservation of SusD-like SGBPs-A is juxtaposed with the diverse architectures and binding modes of the SGBPs-B. Specifically, the structures of the trimodular BtSGBP-B and BuSGBP-B revealed a tandem repeat of carbohydrate-binding module-like domains connected by long linkers. In contrast, BfSGBP-B comprises a bimodular architecture with a distinct ß-barrel domain at the C terminus that bears a shallow binding canyon. The molecular insights obtained here contribute to our fundamental understanding of HGM function, which in turn may inform tailored microbial intervention therapies.


Asunto(s)
Microbioma Gastrointestinal/fisiología , beta-Glucanos/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Especificidad de la Especie
11.
Appl Environ Microbiol ; 88(1): e0156621, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34731054

RESUMEN

Xyloglucan (XyG) is a ubiquitous plant cell wall hemicellulose that is targeted by a range of syntenic, microheterogeneous xyloglucan utilization loci (XyGUL) in Bacteroidetes species of the human gut microbiota (HGM), including Bacteroides ovatus and B. uniformis. Comprehensive biochemical and biophysical analyses have identified key differences in the protein complements of each locus that confer differential access to structurally diverse XyG side chain variants. A second, nonsyntenic XyGUL was previously identified in B. uniformis, although its function in XyG utilization compared to its syntenic counterpart was unclear. Here, complementary enzymatic product profiles and bacterial growth curves showcase the notable preference of BuXyGUL2 surface glycan-binding proteins (SGBPs) to bind full-length XyG, as well as a range of oligosaccharides produced by the glycoside hydrolase family 5 (GH5_4) endo-xyloglucanase from this locus. We use isothermal titration calorimetry (ITC) to characterize this binding capacity and pinpoint the specific contributions of each protein to nutrient capture. The high-resolution structure of BuXyGUL2 SGBP-B reveals remarkable putative binding site conservation with the canonical XyG-binding BoXyGUL SGBP-B, supporting similar roles for these proteins in glycan capture. Together, these data underpin the central role of complementary XyGUL function in B. uniformis and broaden our systems-based and mechanistic understanding of XyG utilization in the HGM. IMPORTANCE The omnipresence of xyloglucans in the human diet has led to the evolution of heterogeneous gene clusters in several Bacteroidetes species in the HGM, each specially tuned to respond to the structural variations of these complex plant cell wall polysaccharides. Our research illuminates the complementary roles of syntenic and nonsyntenic XyGUL in B. uniformis in conferring growth on a variety of XyG-derived substrates, providing evidence of glycan-binding protein microadaptation within a single species. These data serve as a comprehensive overview of the binding capacities of the SGBPs from a nonsyntenic B. uniformis XyGUL and will inform future studies on the roles of complementary loci in glycan targeting by key HGM species.


Asunto(s)
Tracto Gastrointestinal , Xilanos , Bacteroides , Glucanos , Humanos , Hidrólisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-35133260

RESUMEN

Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H2 as the end metabolic products. Strains ASD3451 and ASD5720T were motile, fermented lactose and raffinose, and weakly fermented maltose. Strain ASD4241T was non-motile and did not ferment the carbohydrates listed above but fermented starch. Strains ASD3451 and ASD5720T shared average nucleotide identity higher than 98.5 % with each other, while ASD4241T had only 88.5-89 % identity to them. Based on phylogenetic and chemotaxonomic analyses, we propose Diplocloster agilis gen. nov., sp. nov. (ASD5720T=JCM 34353T=VKM B-3497T) and Diplocloster modestus sp. nov. (ASD4241T=JCM 34351T=VKM B-3498T) within the family Lachnospiraceae.


Asunto(s)
Heces/microbiología , Firmicutes/clasificación , Filogenia , Anaerobiosis , Técnicas de Tipificación Bacteriana , Composición de Base , Niño , ADN Bacteriano/genética , Ácidos Grasos/química , Firmicutes/aislamiento & purificación , Humanos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
J Appl Microbiol ; 133(2): 898-907, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543338

RESUMEN

AIMS: The aim of this study was to evaluate the diversity and potential for horizontal transfer of amikacin resistance genes from the human gut. METHODS AND RESULTS: A library of human faecal microbiota was constructed and subjected to functional screening for amikacin resistance. In total, five amikacin resistance genes that conferred relatively high amikacin resistance, with minimum inhibitory concentrations (MICs) ranging from 64 to >512, were identified from the library, including a novel aminoglycoside acetyltransferase gene and a 16S rRNA methyltransferase (MTase) gene, labelled aac (6')-Iao and rmtI, respectively. AAC(6')-Iao showed the highest identity of 48% to AAC(6')-Ian from a clinical isolate Serratia marcescens, whereas RmtI shared the closest amino acid identity of 32% with ArmA from Klebsiella pneumonia. The MICs of these five subclones to six commonly used aminoglycosides were determined. Susceptibility analysis indicated that RmtI was associated with high resistance phenotype to 4,6-disubstituted 2-DOS aminoglycosides, whereas AAC(6')-Iao conferred resistance to amikacin and kanamycin. In addition, kinetic parameters of AAC(6')-Iao were determined, suggesting a strong catalytic effect on amikacin and kanamycin. CONCLUSIONS: Antibiotic resistance genes with low identity to known sequences can be uncovered by functional metagenomics. In addition, the diversity and prevalence of amikacin resistance genes merit further investigation in extended habitats, especially the 16S rRNA MTase gene that might have been underestimated in previous cognition. SIGNIFICANCE AND IMPACT OF STUDY: Two novel amikacin resistance genes were identified in this study, including a 16S rRNA methyltransferase gene rmtI and an aminoglycoside acetyltransferase gene aac(6')-Iao. This work would contribute to the in-depth study of the diversity and horizontal transfer potential of amikacin resistance genes in the microbiome of the human gut.


Asunto(s)
Amicacina , Microbioma Gastrointestinal , Amicacina/farmacología , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/genética , Humanos , Kanamicina , Metiltransferasas/genética , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética
14.
Antonie Van Leeuwenhoek ; 115(11): 1349-1361, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36149539

RESUMEN

Two strains, designated as Marseille-P2918T and Marseille-P3646T, were isolated from a 14-week-old Senegalese girl using culturomics: Urmitella timonensis strain Marseille-P2918T (= CSUR P2918, = DSM 103634) and Marasmitruncus massiliensis strain Marseille-P3646T (= CSUR P3646, = CCUG72353). Both strains were rod-shaped, anaerobic, spore forming motile bacteria. The 16S rRNA gene sequences of strains Marseille-P2918T (LT598554) and Marseille-P3646T (LT725660) shared 93.25% and 94.34% identity with Tissierella praeacuta ATCC 25539T and Anaerotruncus colihominis CIP 107754T, their respective phylogenetically closest species with standing in nomenclature. Therefore, strain Marseille-P2918T is classified within the family Tissierellaceae and order Tissierellales whereas strain Marseille-P3646T is classified within the family Oscillospiraceae and order Eubacteriales. The genome of strain Marseille-P2918T had a size of 2.13 Mb with a GC content of 50.52% and includes six scaffolds and six contigs, and that of strain Marseille-P3646T was 3.76 Mbp long consisting of five contigs with a 50.04% GC content. The genomes of both strains presented a high percentage of genes encoding enzymes involved in genetic information and processing, suggesting a high growth rate and adaptability. These new taxa are extensively described and characterised in this paper, using the concept of taxono-genomic description.


Asunto(s)
ARN Ribosómico 16S , Humanos , Niño , Femenino , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Filogenia
15.
Biosci Biotechnol Biochem ; 86(4): 464-475, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35092420

RESUMEN

Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a ß-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.


Asunto(s)
Proteínas Bacterianas , Oligosacáridos , Animales , Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Haplorrinos , Humanos , Leche Humana , Oligosacáridos/química
16.
J Bacteriol ; 203(21): e0038321, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34370557

RESUMEN

The last two decades have seen numerous studies connecting physiological behaviors in Bacteroides-including polysaccharide degradation and capsule production-with elements of global regulation, but a complete model is still elusive. A new study by Adams et al. in this issue of the Journal of Bacteriology reveals another layer of regulation by describing a novel family of RNA-binding proteins in Bacteroides thetaiotaomicron that modify expression of genes involved in carbohydrate utilization and capsule expression, among others (A. N. D. Adams, M. S. Azam, Z. A. Costliow, X. Ma, et al., J Bacteriol 203:e00217-21, 2021, https://doi.org/10.1128/JB.00217-21).


Asunto(s)
Bacteroides thetaiotaomicron , Bacteroides , Bacteroides/genética , Bacteroides thetaiotaomicron/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Polisacáridos , ARN
17.
BMC Genomics ; 22(1): 695, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34563136

RESUMEN

BACKGROUND: Biogenic histamine plays an important role in immune response, neurotransmission, and allergic response. Although endogenous histamine production has been extensively studied, the contributions of histamine produced by the human gut microbiota have not been explored due to the absence of a systematic annotation of histamine-secreting bacteria. RESULTS: To identify the histamine-secreting bacteria from in the human gut microbiome, we conducted a systematic search for putative histamine-secreting bacteria in 36,554 genomes from the Genome Taxonomy Database and Unified Human Gastrointestinal Genome catalog. Using bioinformatic approaches, we identified 117 putative histamine-secreting bacteria species. A new three-component decarboxylation system including two colocalized decarboxylases and one transporter was observed in histamine-secreting bacteria among three different phyla. We found significant enrichment of histamine-secreting bacteria in patients with inflammatory bowel disease but not in patients with colorectal cancer suggesting a possible association between histamine-secreting bacteria and inflammatory bowel disease. CONCLUSIONS: The findings of this study expand our knowledge of the taxonomic distribution of putative histamine-secreting bacteria in the human gut.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Bacterias/metabolismo , Transporte Biológico , Histamina , Humanos
18.
Appl Environ Microbiol ; 87(20): e0048821, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347523

RESUMEN

Multidrug-resistant (MDR) Escherichia coli strains that carry extended-spectrum ß-lactamases (ESBLs) or colistin resistance gene mcr-1 have been identified in the human gut at an increasing incidence worldwide. In this study, we isolated and characterized MDR Enterobacteriaceae from the gut microbiota of healthy Singaporeans and show that the detection rates for ESBL-producing and mcr-positive Enterobacteriaceae are 25.7% (28/109) and 7.3% (8/109), respectively. Whole-genome sequencing analysis of the 37 E. coli isolates assigned them into 25 sequence types and 6 different phylogroups, suggesting that the MDR E. coli gut colonizers are highly diverse. We then analyzed the genetic context of the resistance genes and found that composite transposons played important roles in the cotransfer of blaCTX-M-15/55 and qnrS1, as well as the acquisition of mcr-1. Furthermore, comparative genomic analysis showed that 12 of the 37 MDR E. coli isolates showed high similarity to ESBL-producing E. coli isolates from raw meat products in local markets. By analyzing the core genome single nucleotide polymorphisms (SNPs) shared by these isolates, we identified possible clonal transmission of an MDR E. coli clone between human and raw meat, as well as a group of highly similar IncI2 (Delta) plasmids that might be responsible for the dissemination of mcr-1 in a much wider geographic region. Together, these results suggest that antibiotic resistance may be transmitted between different environmental settings by the expansion of MDR E. coli clones, as well as by the dissemination of resistance plasmids. IMPORTANCE The human gut can harbor both antibiotic-resistant and virulent Escherichia coli which may subsequently cause infections. In this study, we found that multidrug-resistant (MDR) E. coli isolates from the gut of healthy Singaporeans carry a diverse range of antibiotic resistance mechanisms and virulence factor genes and are highly diverse. By comparing their genomes with the extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates from raw meat products that were sampled at a similar time from local markets, we detected an MDR E. coli clone that was possibly transmitted between humans and raw meat products. Furthermore, we also found that a group of resistance plasmids might be responsible for the dissemination of colistin resistance gene mcr-1 in Singapore, Malaysia, and Europe. Our findings call for better countermeasures to block the transmission of antibiotic resistance.


Asunto(s)
Escherichia coli/aislamiento & purificación , Microbioma Gastrointestinal , Antibacterianos/farmacología , Ceftriaxona/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Heces/microbiología , Contaminación de Alimentos/análisis , Humanos , Carne/microbiología , Filogenia , Polimorfismo de Nucleótido Simple , Singapur , Secuenciación Completa del Genoma , beta-Lactamasas/metabolismo
19.
BMC Microbiol ; 21(1): 158, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051731

RESUMEN

BACKGROUND: New developments in next-generation sequencing technologies and massive data received from this approach open wide prospects for personalised medicine and nutrition studies. Metagenomic analysis of the gut microbiota is paramount for the characterization of human health and wellbeing. Despite the intensive research, there is a huge gap and inconsistency between different studies due to the non-standardised and biased pipeline. Methodical and systemic understanding of every stage in the process is necessary to overcome all bottlenecks and grey zones of gut microbiota studies, where all details and interactions between processes are important. RESULTS: Here we show that an inexpensive, but reliable iSeq 100 platform is an excellent tool to perform the analysis of the human gut microbiota by amplicon sequencing of the 16 S rRNA gene. Two commercial DNA extraction kits and different starting materials performed similarly regarding the taxonomic distribution of identified bacteria. DNA/RNA Shield reagent proved to be a reliable solution for stool samples collection, preservation, and storage, as the storage of faecal material in DNA/RNA Shield for three weeks at different temperatures and thawing cycles had a low impact on the bacterial distribution. CONCLUSIONS: Altogether, a thoroughly elaborated pipeline with close attention to details ensures high reproducibility with significant biological but not technical variations.


Asunto(s)
Bacterias/genética , ADN Bacteriano/aislamiento & purificación , Microbioma Gastrointestinal , Metagenómica/métodos , Preservación Biológica/métodos , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Ribosómico 16S/genética
20.
Eur J Nutr ; 60(7): 3987-3999, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33934200

RESUMEN

PURPOSE: Plasma trimethylamine-N-oxide (TMAO) levels have been shown to correlate with increased risk of metabolic diseases including cardiovascular diseases. TMAO exposure predominantly occurs as a consequence of gut microbiota-dependent trimethylamine (TMA) production from dietary substrates including choline, carnitine and betaine, which is then converted to TMAO in the liver. Reducing microbial TMA production is likely to be the most effective and sustainable approach to overcoming TMAO burden in humans. Current models for studying microbial TMA production have numerous weaknesses including the cost and length of human studies, differences in TMA(O) metabolism in animal models and the risk of failing to replicate multi-enzyme/multi-strain pathways when using isolated bacterial strains. The purpose of this research was to investigate TMA production from dietary precursors in an in-vitro model of the human colon. METHODS: TMA production from choline, L-carnitine, betaine and γ-butyrobetaine was studied over 24-48 h using an in-vitro human colon model with metabolite quantification performed using LC-MS. RESULTS: Choline was metabolised via the direct choline TMA-lyase route but not the indirect choline-betaine-TMA route, conversion of L-carnitine to TMA was slower than that of choline and involves the formation of the intermediate γ-BB, whereas the Rieske-type monooxygenase/reductase pathway for L-carnitine metabolism to TMA was negligible. The rate of TMA production from precursors was choline > carnitine > betaine > γ-BB. 3,3-Dimethyl-1-butanol (DMB) had no effect on the conversion of choline to TMA. CONCLUSION: The metabolic routes for microbial TMA production in the colon model are consistent with observations from human studies. Thus, this model is suitable for studying gut microbiota metabolism of TMA and for screening potential therapeutic targets that aim to attenuate TMA production by the gut microbiota. TRIAL REGISTRATION NUMBER: NCT02653001 ( http://www.clinicaltrials.gov ), registered 12 Jan 2016.


Asunto(s)
Microbioma Gastrointestinal , Animales , Carnitina , Colina , Colon , Fermentación , Humanos , Metilaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA