Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(5): 2185-2203, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38237040

RESUMEN

The groundwater table fluctuation (GTF) zone is an important medium for the hydrologic cycle between unsaturated soil and saturated aquifers, which accelerates the migration, transformation, and redistribution of contaminants and further poses a potential environmental risk to humans. In this review, we clarify the key processes in the generation of the GTF zone and examine its links with the variation of the hydrodynamic and hydrochemistry field, colloid mobilization, and contaminant migration and transformation. Driven by groundwater recharge and discharge, GTF regulates water flow and the movement of the capillary fringe, which further control the advection and dispersion of contaminants in soil and groundwater. In addition, the formation and variation of the reactive oxygen species (ROS) waterfall are impacted by GTF. The changing ROS components partially determine the characteristic transformation of solutes and the dynamic redistribution of the microbial population. GTF facilitates the migration and transformation of contaminants (such as nitrogen, heavy metals, non-aqueous phase liquids, and volatile organic compounds) through colloid mobilization, the co-migration effect, and variation of the hydrodynamic and hydrochemistry fields. In conclusion, this review illustrates the limitations of the current literature on GTF, and the significance of GTF zones in the underground environment is underscored by expounding on the future directions and prospects.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Suelo , Especies Reactivas de Oxígeno , Movimientos del Agua , Agua Subterránea/química , Coloides , Contaminantes Químicos del Agua/análisis
2.
Environ Res ; 260: 119622, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019141

RESUMEN

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Urbanización , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Nitratos/análisis
3.
Environ Res ; 250: 118406, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382659

RESUMEN

The study area receives an average of 2840.0 mm of rainfall within four months every year. A portion of the rainwater is flown to the sea as surface water, and the other part is percolated into the bottom as groundwater. In coastal aquifers, the groundwater is transported to the sea due to a hydraulic gradient, and it contains a significant quantity of dissolved materials and nutrients. SGD processes impact the ocean productivity, mangrove and coral growth, local acidification and many. To isolate the SGD on the central west coast of India, different data was referred. The GWL concerning MSL contributed significantly to demarcating the SGD zones by considering the positive (>0 m) and negative (<0 m) values of GWL concerning above MSL. Thermal images for SST of pre-monsoon and post-monsoon periods of 2020 exhibit cooler surrounded by warmer, which might be the SGD buffering zones in the off-central west coast of India. By considering the results from GWL and SST, 8 SGD beach sites were identified for the further particularized study. The water samples were collected in March 2022, and analyzed using standard procedures and instruments. Fresh and mixing (recirculated) zones have been isolated by piper, hydrochemical facies evolution, and Ca2++Mg2+/K++Na + Vs log Cl- ionic ratio plots. The aquifer water chemical elements are converting possibly due to ionic exchange processes. The decrease in salinity and conductivity observed in the pore water just below the seawater might be due to the influence of freshwater inputs, helping to isolate the fresh SGD and recirculated SGD zones in the study area. Among 8 sites, 3 were found to be fresh SGD sites and 5 were noticed to be mixing/recirculated SGD sites. Most of these Beaches are bounded by hills, which helps to lead the SGD along the central west coast of India.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , India , Agua Subterránea/química , Agua Subterránea/análisis , Movimientos del Agua , Agua de Mar/química , Agua de Mar/análisis , Agua Dulce/química
4.
Environ Res ; 257: 119272, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823613

RESUMEN

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.


Asunto(s)
Bacterias , Bahías , Bahías/microbiología , Bacterias/genética , Microbiota/efectos de los fármacos , Biodiversidad , Calidad del Agua , Estuarios
5.
Environ Res ; 252(Pt 2): 118934, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653438

RESUMEN

The Changzhi Basin in Shanxi is renowned for its extensive mining activities. It's crucial to comprehend the spatial distribution and geochemical factors influencing its water quality to uphold water security and safeguard the ecosystem. However, the complexity inherent in hydrogeochemical data presents challenges for linear data analysis methods. This study utilizes a combined approach of self-organizing maps (SOM) and K-means clustering to investigate the hydrogeochemical sources of shallow groundwater in the Changzhi Basin and the associated human health risks. The results showed that the groundwater chemical characteristics were categorized into 48 neurons grouped into six clusters (C1-C6) representing different groundwater types with different contamination characteristics. C1, C3, and C5 represent uncontaminated or minimally contaminated groundwater (Ca-HCO3 type), while C2 signifies mixed-contaminated groundwater (HCO3-Ca type, Mixed Cl-Mg-Ca type, and CaSO4 type). C4 samples exhibit impacts from agricultural activities (Mixed Cl-Mg-Ca), and C6 reflects high Ca and NO3- groundwater. Anthropogenic activities, especially agriculture, have resulted in elevated NO3- levels in shallow groundwater. Notably, heightened non-carcinogenic risks linked to NO3-, Pb, F-, and Mn exposure through drinking water, particularly impacting children, warrant significant attention. This research contributes valuable insights into sustainable groundwater resource development, pollution mitigation strategies, and effective ecosystem protection within intensive mining regions like the Changzhi Basin. It serves as a vital reference for similar areas worldwide, offering guidance for groundwater management, pollution prevention, and control.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Minería , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/análisis , China , Contaminantes Químicos del Agua/análisis , Humanos , Monitoreo del Ambiente/métodos , Medición de Riesgo
6.
J Water Health ; 22(8): 1444-1471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212281

RESUMEN

The study area covers the Banaz (Usak) basin located in the Aegean Region in the western part of Turkey. Metamorphic, sedimentary, ultramafic, and volcanic rocks are dominant in the basin. The groundwaters in the study area are used for domestic, irrigational, and industrial purposes. Hence, the groundwater chemistry and major geochemical processes in the region were determined. The dominance of major elements was of the order of Ca2+ > Mg2+ > Na+ > K+ and HCO3- > CO3- > Cl- > SO42-. Piper, Durov, Chadha, and Radial plots identified generally Ca2+-Mg2+-HCO3- type waters as the dominant types of water in this area. In terms of physical parameters in the basin, the waters are suitable for drinking. However, arsenic content in Yesilyurt and Corum settlements exceeds the limit values of drinking water standards. In addition, the ammonium value is high in the water sample in the Corum region. Isotope contents in water samples from 2008 to 2023 were evaluated in the study area. The waters in the basin are of meteoric origin according to their stable isotope content. Tritium content in the plain waters indicates recent recharge. Additionally, for children, As and U elements were identified as risky with oral intake and As with dermal contact.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Turquía , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua Potable/química , Agua Potable/análisis , Humanos , Medición de Riesgo , Isótopos/análisis , Arsénico/análisis
7.
Ecotoxicol Environ Saf ; 269: 115822, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091679

RESUMEN

Nitrate (NO3-) contamination of surface water is a global environmental problem that has serious consequences for watershed ecosystems and endangers human health. It is crucial to identify influences of different sources of NO3-, especially the incoming water from upper reaches. A combination of hydrochemistry and multi-isotope tracers (δ11B, δ15N-NO3-, and δ18O-NO3-) were used to determine NO3- sources and their transformation the North Jiulong River (NJLR), Southeast China. The findings revealed that NO3-, which accounted for an average of 87.1% of dissolved inorganic nitrogen (DIN), was the main chemical form of nitrogen species. The integration of dual stable isotopes of NO3-, δ11B, and hydrochemistry showed that NO3- was primarily contributed by sewage, soil nitrogen (SN), and ammonium (NH4+) via precipitation or fertilizers. The contributions from the sewage and soil nitrate source were almost equivalent and much higher than those from other sources in the NJLR watershed. The contributions from diverse sources varied seasonally and spatially. Manure and sewage (M&S) were the leading sources in the summer and autumn, accounting for 60.9 ± 8.5% and 47.3 ± 7.9%, respectively. However, NO3- fertilizers were the predominant source in the spring and winter. The NO3- inflow from upper reaches was proposed as an additional end-member to identify its contribution in the midstream and downstream in this study. The contributions of NO3- from the upper reaches were significant sources in the midstream and downstream, accounting for 27.2 ± 17.8% and 42.9 ± 21.9%, respectively. The obvious decline in local NO3-contribution shares from midstream to downstream implied structural changes in pollutant sources and regional environmental responsibility. Therefore, tracing nitrate sources and quantifying their contributions is critical for clarifying environmental responsibilities for precise local nitrogen management in watersheds.


Asunto(s)
Nitrógeno , Contaminantes Químicos del Agua , Humanos , Nitrógeno/análisis , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Aguas del Alcantarillado , Ecosistema , Fertilizantes/análisis , Suelo/química , Agua , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Teorema de Bayes
8.
J Environ Manage ; 362: 121269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823303

RESUMEN

Monitoring and assessing groundwater quality and quantity lays the basis for sustainable management. Therefore, this research aims to investigate various factors that affect groundwater quality, emphasizing its distance to the primary source of recharge, the Nile River. To this end, two separate study areas have been considered, including the West and West-West of Minia, Egypt, located around 30 and 80 km from the Nile River. The chosen areas rely on the same aquifer as groundwater source (Eocene aquifer). Groundwater quality has been assessed in the two studied regions to investigate the difference in quality parameters due to the river's distance. The power of machine learning to associate different variables and generate beneficial relationships has been utilized to mitigate the cost consumed in chemical analysis and alleviate the calculation complexity. Two adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the water quality index (WQI) and the irrigation water quality index (IWQI) using EC and the distance to the river. The findings of the assessment of groundwater quality revealed that the groundwater in the west of Minia exhibits suitability for agricultural utilization and partially meets the criteria for potable drinking water. Conversely, the findings strongly recommend the implementation of treatment processes for groundwater sourced from the West-West of Minia before its usage for various purposes. These outcomes underscore the significant influence of surface water recharge on the overall quality of groundwater. Also, the results revealed the uncertainty of using sodium adsorption ratio (SAR), Sodium Percentage (Na%), and Permeability Index (PI) techniques in assessing groundwater for irrigation and recommended using IWQI. The developed ANFIS models depicted perfect accuracy during the training and validation stages, reporting a coefficient of correlation (R) equal to 0.97 and 0.99 in the case of WQI and 0.96 and 0.98 in the case of IWQI. The research findings could incentivize decision-makers to monitor, manage, and sustain groundwater.


Asunto(s)
Agua Subterránea , Calidad del Agua , Agua Subterránea/química , Egipto , Ríos/química , Monitoreo del Ambiente , Lógica Difusa , Contaminantes Químicos del Agua/análisis
9.
Environ Geochem Health ; 46(7): 239, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849593

RESUMEN

The Ras Elma region, situated to the south of the city of Taza in northern Morocco, boasts abundant travertine formations that continue to develop, albeit selectively in specific sheltered sites. This development is influenced by various parameters, including the role of water chemistry. This article presents a spatio-temporal analysis of various hydrochemical parameters, including conductivity, pH, temperature, magnesium, calcium, and others. It's worth noting that the water from the Ras Elma Vauclusian spring, a key driver of travertinization in the region, is sourced from water infiltrating through faults and flowing into Lake Tompraire, known as Dayat Chikker near the Bab Boudir area. The findings suggest that the water in Ras Elma has turned aggressive, as revealed by the examination of the calcaro-carbonic equilibrium. CaCO3 precipitation occurs predominantly in the summer, significantly impacting the formation of travertines, particularly those of the spring and dam types. However, valley-type travertines exhibit more extensive development compared to the other two types.


Asunto(s)
Temperatura , Marruecos , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Calcio/análisis , Manantiales Naturales/química , Magnesio/análisis , Magnesio/química , Estaciones del Año , Carbonato de Calcio/química , Lagos/química
10.
Environ Geochem Health ; 46(10): 393, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180598

RESUMEN

The Ngari region has many important rivers and is critical to water resource security and water resource continuity in China and even in adjoining Asian countries. However, the spatial distribution and monthly variation in local water quality have been poorly understood until recently. In this study, the spatial-temporal variations of 12 water quality parameters, including pH, dissolved oxygen (DO), permanganate index (IMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NNH3), total nitrogen (Ntotal), total phosphorus (Ptotal), copper (Cu), fluoride (F), arsenic (As) and cadmium (Cd), were determined from samples collected monthly at 22 water cross-sectional sites in the Ngari region in 2020. The surface water pollution in the southern Ngari region was the most serious, and the water pollution level in winter was higher than that in the other seasons. As (0.0781 ~ 0.6154 mg/L) and F (1.05 ~ 4.64 mg/L) were the main exceedance factors derived from the recharge of high arsenic and fluoride geothermal water and weathering of As and F-bearing minerals. The hazard quotient and carcinogenic risk for As and F at the five contaminated sampling sites indicated potential health risks and even carcinogenicity to local populations. The hydrochemistry types of the lakes and rivers in the Ngari region were mainly chloride water and carbonate water. The results from this study can provide a scientific basis for the prevention and control of surface water pollution in the Ngari region and contribute to subsequent research on the ecology of water bodies.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Análisis Espacio-Temporal , Fluoruros/análisis , Arsénico/análisis , Estaciones del Año , Calidad del Agua , Medición de Riesgo , Nitrógeno/análisis , Fósforo/análisis
11.
Environ Geochem Health ; 46(4): 134, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483664

RESUMEN

Familiarity with the chemical characteristics of regional groundwater can provide important guidance and reference for the development of regional groundwater exploitation. Jianghan Plain has been reported to have high groundwater total hardness (TH), resulting in the inability of local groundwater to be directly used as drinking water. In order to explore the causes of high TH, the paper analyzed the hydrochemical characteristics of shallow groundwater in Jianghan Plain combined with software of SPSS, JMP, and PHEEQC. The results showed that the cations in the groundwater in the area were mainly Ca2+, while the anions were mainly HCO3-. 20% of groundwater exceed the China national guideline for TH (i.e., 450 mg/L). The groundwater chemistry in the study area was controlled by three main factors of dissolution of carbonate rocks, human activities, and redox conditions, among which the interaction between water and rock had the greatest impact. The water carbonate rock interaction within Jianghan Plain was affected by various factors such as water flow and aquifers and showed a gradually weakening trend from west to east. This work not only strengthened the understanding of the causes of the high TH of groundwater in the region, but also provided reference value for regional groundwater environmental management.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Dureza , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Calidad del Agua , Agua Potable/análisis , China , Carbonatos/análisis
12.
Environ Geochem Health ; 46(8): 292, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976118

RESUMEN

Groundwater, as an essential resource, holds significant importance for human production and livelihoods. With the deterioration of the water environment, the issue of groundwater quality has become an urgent international concern. This study focused on the Fenghuang Mountain Area (FMA) and collected a total of 41 sets of samples including pore groundwater (PGW), fissure groundwater (FGW), karst groundwater (KGW), and river water (RW). Hydrochemical analysis methods were employed to identify the hydrochemical characteristics and controlling factors. The entropy-weighted water quality index (EWQI) and health risk assessment model were utilized to assess the groundwater quality and nitrate health risk, respectively. The results indicated that the dominant anion and cation in both groundwater and surface water in the FMA were HCO3- and Ca2+, respectively, with the main hydrochemical type being HCO3-Ca. Groundwater and surface water in the FMA were primarily controlled by rock weathering process, with ion concentrations influenced mainly by the dissolution of halite, sylvite, carbonates (calcite and dolomite), silicates, and gypsum, as well as by reverse anion exchange process. PGW was significantly affected by agricultural activities, with NO3- concentration closely related to human activities. The water quality of FGW was relatively good, with Class I and Class II water accounting for the highest proportion, reaching 84.62%. The high-value area of EWQI in PGW was influenced by human activities. The impact of nitrate health risk on children was significantly greater than on adults, with FGW having the lowest health risk and PGW having the highest health risk. The research results can provide important guarantees for the rational development and utilization of water resources in the FMA and the sustainable development of the economy in Northeast China.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Calidad del Agua , China , Medición de Riesgo , Agua Subterránea/química , Humanos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Niño , Adulto , Ríos/química
13.
Environ Monit Assess ; 196(4): 343, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438765

RESUMEN

Drinking water quality deteriorates rapidly due to anthropogenic activities and rapid population growth. These activities, in developing countries, will lead to water scarcity. In Pakistan, 70% of the population has no access to safe water, and people use canal water to drink. This study performed hydrochemical, hydrogeological, and cancer risk analyses on Tahsil Hasilpur, Bahawalpur, Pakistan. Thirteen tube wells were selected for groundwater and borehole log study. Twenty-two drinking water quality parameters were analyzed using standard methods and quality checks. The borehole data (2D and 3D) shows the abundance of sand (fine and coarse) with some uniformities, which changes the groundwater quality. The results of water quality parameters show that the concentration of TDS (2064-11,159 mg/L), Cl-1 (213-4917 mg/L), As+3 (0.048-0.158 mg/L), Pb+2 (1.294-1.673 mg/L), and Cd+2 (0.008-0.053 mg/L) were beyond guideline values. The statistical analysis showed that the parameters have a moderate to strong correlation (Pearson correlation), which may be due to the same origin (ANOVA). The principal component analysis and cluster analysis confirm the multiple sources of pollutants in the groundwater of the study area. The Piper, Durov, Stiff, and Scholler diagrams confirm that the groundwater system has an abundance of Ca+2 and Mg+2 with Cl-1. The Gibbs diagram showed that the groundwater is not saturated and tends to dissolve more minerals. The hazard quotient values are above 1.0, which indicates noncancer risk severity. The HQ trend was As+3 > Pb+2 > Cd+2 > Ni+2 > Cu+2 > Cr+2 > Zn+2 > Fe+2. The cancer risk values showed that 3-5 people/100 population were exposed to cancer risk. The trend of CR was As+3 > Cd+2 > Cr+2 > Pb+2 > Ni+2. The GIP mapping of pollutants showed that the concentration of pollutants near the canals was high compared to the locations away from the canal. The overall groundwater quality is alarming and needs immediate government attention.


Asunto(s)
Agua Potable , Contaminantes Ambientales , Agua Subterránea , Neoplasias , Humanos , Efectos Antropogénicos , Pakistán , Cadmio , Plomo , Monitoreo del Ambiente , Neoplasias/epidemiología , Medición de Riesgo
14.
Environ Monit Assess ; 196(7): 624, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884659

RESUMEN

Effectively managing water resources in karst systems requires a thorough understanding of their general conduit network along with their seasonal dynamics. Their investigation has involved well construction or several advanced natural tracer data, most of which are not always available. Hence, this work showcases a pragmatic approach that makes use of basic hydrochemical variables of springs with coarse temporal resolution in characterising a karst system. In this study's example, physicochemical variables like major ion concentrations/ratios, Electrical Conductivity (EC), pH and water temperature (Tw) were measured on 20-day basis for a hydrological year at the Louros Catchment, Greece. We further performed the frequency distribution and variation analysis of EC and Tw, principal component analysis (PCA), scatter plots of carbonate ions vs sulphate and hydrochemographs to determine relevant hydrochemical processes and hydrogeological features. PCA and the scatter plots showed that the simple-type upper karst level is entirely dominated by carbonate dissolution, whereas the complex-type middle and lower levels also involve gypsum and dolomite dissolution. Presence of mixing between karst units was also detected. EC and Tw analyses revealed the degree of karstification of different units and relative depths of flow systems. Hydrochemographs reflected the seasonality of limestone and gypsum dissolution's contributions linked to the dominant flow type (conduit vs diffuse). This study thus was able to demonstrate the usefulness of such holistic hydrochemical analyses to better understand karst systems. Given their cost-effectiveness, they can be easily applied to any understudied karst system worldwide.


Asunto(s)
Monitoreo del Ambiente , Grecia , Manantiales Naturales/química , Estaciones del Año , Hidrología , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
15.
Environ Monit Assess ; 196(11): 1019, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367920

RESUMEN

Groundwater quality degradation is a significant environmental issue worldwide, with potentially severe economic consequences and harm to ecosystems and biodiversity. This can directly affect human health, particularly in developing countries where rapid and uncontrolled urbanization is on the rise. Groundwater is the primary resource for meeting the water needs of the Eloued region, located in southeastern Algeria. Water is considered unfit for human consumption if its physico-chemical elements exceed national or international standards or guidelines. We used the GPI and SPI indices to evaluate the quality of groundwater suited for drinking. Groundwater samples were obtained from 22 wells at depths of more than 250 m. Standard analytical procedures were used to determine the physicochemical characteristics of the collected samples, which included pH, EC, TDS, Na+, Ca+2, Mg+2, K+, Cl-, HCO3-, SO4-2, NO3-, NO2-, NH4+ and PO4-3. Multivariate statistical analysis and GIS techniques were used to process the results. The results of the selected physicochemical parameters were compared with World Health Organization (WHO) guidelines to determine the quality of drinking water. The findings indicate that the waters of the terminal complex aquifer are salty and contain medium to high quantities of main ions that surpass the established drinking water limits. The primary ions' relative abundance is Cl- > SO4-2 > HCO3- > NO3 for anions and Na+ > Ca+2 > Mg+2 > K+ for cations. Groundwater chemical types were dominated by Na+, Ca+2, Cl-, and SO4-2. Principal Component Analysis (PCA) showed that alteration and dissolution of carbonates, evaporates, salts, partly silicates, and evaporation, are the main reasons affecting the chemical composition of water in Eloued. The GPI results show that 18.18%, 54.54%, and 27.27% of the water samples were classed as lightly polluted, moderately polluted, or substantially polluted for drinking purposes, respectively. According to the SPI study, 9.09%, 36.36%, 36.36%, and 18.18% were considered drinkable, mildly contaminated, moderately polluted, and seriously polluted for drinking purposes, respectively. According to the GPI and SPI models' geographical distribution maps, potable water is generally scarce and concentrated in the northeastern section of the research area, near the town of Ourmes.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Argelia , Agua Subterránea/química , Agua Potable/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Calidad del Agua
16.
Environ Monit Assess ; 196(10): 954, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298022

RESUMEN

Relict caves in fenglin karst may typically have numerous entrances and openings. Hence, they host a variety of environments in which parameters such as light, airflow, humidity, and temperature may vary significantly over short distances. Similarly, drip water hydrochemistry, including isotopic values, may vary due to different contributions of various sources and residence time in the karst. This study investigated environmental parameters, including radiation, using hand-held instruments, along a transect within several major caves in the Niah karst of Sarawak (Malaysia). This has led to a baseline data set which showed an inverse relationship between humidity and temperature, gamma radiation levels that are about 25% of that in surrounding non-karst region, and high percentages of twilight zones in the studied caves. Airflow was found to be variable, with high values of 530 m3/s in Painted Cave and 122 m2/s in parts of Gan Kira passage, with flow towards the southeast at the time of the study. The hydrochemistry of the drip water and surface water was also analyzed and found to be dominantly Ca-Mg-Cl water type which indicates dissolution of minerals through water-rock interaction. In addition, the cave environment, particularly air temperature, humidity, and ventilation, also influences the drip water composition and isotopic values. Three different origins (precipitation, evaporation, and paleo-recharge) of drip water have been identified through the δ18O-δ2H diagram. Enriched isotopic values were observed in the cave entrance due to increased evaporation caused by lower humidity and higher air temperature. Factor analysis identifies the key geochemical processes responsible for the drip water chemistry. The outcome of this study provides the first baseline environmental data for the Niah caves, which could support future initiatives for sustainable management of this famous archeological site in southeast Asia.


Asunto(s)
Cuevas , Monitoreo del Ambiente , Cuevas/química , Malasia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Temperatura
17.
Environ Monit Assess ; 196(8): 700, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963476

RESUMEN

This study investigated the mineralogical and chemical characteristics of ochreous precipitates and mine water samples from abandoned Upper Carboniferous hard coal mines in an extensive former mining area in western Germany. Mine water characteristics have been monitored and assessed using a multi-methodological approach. Thirteen mine water discharge locations were sampled for hydrochemical analysis, with a total of 46 water samples seasonally collected in the whole study area for stable isotopic analyses. Mineralogical composition of 13 ochreous precipitates was identified by a combination of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM/EDS). Results showed that abandoned mine drainage was characterized by circumneutral pH, Eh values ranging from 163 to 269 mV, relatively low concentrations of Fe and Mn, and was dominated by HCO3- > SO42- > Cl- > NO3- and Na+ > Ca2+ > Mg2+ > K+. Goethite and ferrihydrite were the dominant precipitated Fe minerals, with traces of quartz, dolomite, and clay minerals. Some metal and metalloid elements (Mn, Al, Si, and Ti) were found in the ochreous sediments. The role of bacteria in the formation of secondary minerals was assessed with the detection of Leptothrix ochracea. The δ18O and δ2H values of mine water plotted on and close to the GMWL and LMWLs indicated local derivation from meteoric water and represented the annual mean precipitation isotopic composition. Results might help to develop strategies for the management of water resources, contaminated mine water, and public health.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Alemania
18.
Environ Sci Technol ; 57(12): 4701-4719, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36912874

RESUMEN

High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.


Asunto(s)
Hidrobiología , Calidad del Agua , Ríos , Predicción , Monitoreo del Ambiente
19.
Environ Res ; 229: 115981, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100365

RESUMEN

Alpine rivers originating from the Tibetan Plateau (TP) contain large amounts of water resources with high environmental sensitivity and eco-fragility. To clarify the variability and controlling factors of hydrochemistry on the headwater of the Yarlung Tsangpo River (YTR), the large river basin with the highest altitude in the world, water samples from the Chaiqu watershed were collected in 2018, and major ions, δ2H and δ18O of river water were analyzed. The values of δ2H (mean: -141.4‰) and δ18O (mean: -18.6‰) were lower than those in most Tibetan rivers, which followed the relationship: δ2H = 4.79*δ18O-52.2. Most river deuterium excess (d-excess) values were lower than 10‰ and positively correlated with altitude controlled by regional evaporation. The SO42- in the upstream, the HCO3- in the downstream, and the Ca2+ and Mg2+ were the controlling ions (accounting for >50% of the total anions/cations) in the Chaiqu watershed. Stoichiometry and principal component analysis (PCA) results revealed that sulfuric acid stimulated the weathering of carbonates and silicates to produce riverine solutes. This study promotes understanding water source dynamics to inform water quality and environmental management in alpine regions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Tibet , Monitoreo del Ambiente/métodos , Ríos , Calidad del Agua , Carbonatos/análisis , Contaminantes Químicos del Agua/análisis
20.
Environ Res ; 223: 115430, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36754107

RESUMEN

Anthropogenic nitrate contamination in groundwater could not be neglected, which has been a global issue threatening public health, especially in agricultural fields where fertilizers were used intensively. The present study focused on evaluating the groundwater evolution process, quality, and associated health risks from nitrate pollution in Nansi Lake Basin (NLB), a typical intensive agricultural region of North China. For this purpose, fifty-two shallow groundwater samples were collected and analyzed major chemical parameters in June 2022. The groundwater samples are found to be mainly dominated by HCO3-Ca·Mg and SO4·Cl-Ca·Mg types. Water-rock interactions like minerals dissolution/precipitation and ion exchange were found to be the important processes influencing hydrochemistry. Nitrate content in groundwater fluctuated from 1.9 to 750.0 mg/L (average:148.7 mg/L), with about 75% of samples surprisingly exceeding the permissible limit (50 mg/L) set by the World Health Organization (WHO). Anthropogenic activities can be classified as excessive nitrogen fertilizer application, livestock manure, and industrial/domestic sewage, coupled with irrigation return flow, which brought significant hazards to human health. The calculation results of entropy weighted water quality index (EWQI) showed that about half of groundwater samples are unfit for drinking purposes. Most importantly, 88.5%, 88.5%, 73.1%, and 71.2% of the water samples had considerable NO3- health risks (HQ > 1) for infants, children, females, and males, respectively. It is suggested that the groundwater should be chemical and biological denitrification for nitrate removal before being used for drinking purposes. The findings of this work can help policymakers to solve groundwater pollution problems and ensure healthy drinking water in such intensive agricultural basins and other similar regions worldwide.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Nitratos/análisis , Lagos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Calidad del Agua , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA