Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(29): e2309821, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366125

RESUMEN

Hydrodeoxygenation (HDO) of lignin derivatives at room-temperature (RT) is still of challenge due to the lack of satisfactory activity reported in previous literature. Here, it is successfully designed a Pd/UiO-66-(COOH)2 catalyst by using UiO-66-(COOH)2 as the support with uncoordinated carboxyl groups. This catalyst, featuring a moderate Pd loading, exhibited exceptional activity in RT HDO of vanillin (VAN, a typical model lignin derivative) to 2-methoxyl-4-methylpheonol (MMP), and >99% VAN conversion with >99% MMP yield is achieved, which is the first metal-organic framework (MOF)-based catalyst realizing the goal of RT HDO of lignin derivatives, surpassing previous reports in the literature. Detailed investigations reveal a linear relationship between the amount of uncoordinated carboxyl group and MMP yield. These uncoordinated carboxyl groups accelerate the conversion of intermediate such as vanillyl alcohol (VAL), ultimately leading to a higher yield of MMP over Pd/UiO-66-(COOH)2 catalyst. Furthermore, Pd/UiO-66-(COOH)2 catalyst also exhibits exceptional reusability and excellent substrate generality, highlighting its promising potential for further biomass utilization.

2.
Chemphyschem ; : e202400505, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978281

RESUMEN

In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100%, with a cyclohexane selectivity of 89.3%. This study presents a promising pathway for converting lignin-derived phenolic compounds.

3.
Environ Res ; 226: 115660, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913997

RESUMEN

Eco-friendly renewable energy sources have recommended as fossil fuel alternatives in recent years to reduce environmental pollution and meet future energy demands in various sectors. As the largest source of renewable energy in the world, lignocellulosic biomass has received considerable interest from the scientific community to advance the fabrication of biofuels and ultrafine value-added chemicals. For example, biomass obtained from agricultural wastes could catalytically convert into furan derivatives. Among furan derivatives, 5-hydroxymethylfurfural (HMF) and 2, 5-dimethylfuran (DMF) are considered the most useful molecules that can be transformed into desirable products such as fuels and fine chemicals. Because of its exceptional properties, e.g., water insolubility and high boiling point, DMF has studied as the ideal fuel in recent decades. Interestingly, HMF, a feedstock upgraded from biomass sources can easily hydrogenate to produce DMF. In the present review, the current state of the art and studies on the transformation of HMF into DMF using noble metals, non-noble metals, bimetallic catalysts, and their composites have discussed elaborately. In addition, comprehensive insights into the operating reaction conditions and the influence of employed support over the hydrogenation process have demonstrated.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Lignina/química , Furanos
4.
Environ Res ; 239(Pt 2): 117357, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37848081

RESUMEN

This paper introduces a transformative hydrodeoxygenation process for the simultaneous recovery of oil and iron from hazardous rolling oil sludge (ROS). Leveraging the inherent catalytic capabilities of iron/iron oxide nanoparticles in the sludge, our process enables the conversion of fatty acids and esters into hydrocarbons under conditions of 4.5 MPa, 330 °C, and 500 rpm. This reaction triggers nanoparticle aggregation and subsequent separation from the oil phase, allowing for effective resource recovery. In contrast to conventional techniques, this method achieves a high recovery rate of 98.3% while dramatically reducing chemical reagent consumption. The reclaimed petroleum and iron-ready for high-value applications-are worth 3910 RMB/ton. Moreover, the process facilitates the retrieval of nanoscale magnetic Fe and Fe0 particles, and the oil, with an impressive hydrocarbon content of 87.8%, can be further refined. This energy-efficient approach offers a greener, more sustainable pathway for ROS valorization.


Asunto(s)
Hierro , Petróleo , Aguas del Alcantarillado , Especies Reactivas de Oxígeno , Hidrocarburos/química
5.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834311

RESUMEN

A series of bifunctional catalysts, MoS2/Al2O3 (70 wt.%), zeolite (30 wt.%) (zeolite-ZSM-5, ZSM-12, and ZSM-22), and silica aluminophosphate SAPO-11, were synthesized for hydroconversion of methyl palmitate (10 wt.% in dodecane) in a trickle-bed reactor. Mo loading was about 7 wt.%. Catalysts and supports were characterized by different physical-chemical methods (HRTEM-EDX, SEM-EDX, XRD, N2 physisorption, and FTIR spectroscopy). Hydroprocessing was performed at a temperature of 250-350 °C, hydrogen pressure of 3.0-5.0 MPa, liquid hourly space velocity (LHSV) of 36 h-1, and an H2/feed ratio of 600 Nm3/m3. Complete conversion of oxygen-containing compounds was achieved at 310 °C in the presence of MoS2/Al2O3-zeolite catalysts; the selectivity for the conversion of methyl palmitate via the 'direct' hydrodeoxygenation (HDO) route was over 85%. The yield of iso-alkanes gradually increases in order: MoS2/Al2O3 < MoS2/Al2O3-ZSM-12 < MoS2/Al2O3-ZSM-5 < MoS2/Al2O3-SAPO-11 < MoS2/Al2O3-ZSM-22. The sample MoS2/Al2O3-ZSM-22 demonstrated the highest yield of iso-alkanes (40%). The hydroisomerization activity of the catalysts was in good correlation with the concentration of Brønsted acid sites in the synthesized supports.


Asunto(s)
Molibdeno , Zeolitas , Zeolitas/química , Alcanos/química , Dióxido de Silicio
6.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446694

RESUMEN

1,3-bis(cyclohexylmethyl)cyclopentane, a renewable high-density fuel, was first produced in a high overall carbon yield (79.5%) with vanillin and cyclopentanone, which can be derived from biomass. The synthetic route used in this work contains two steps. In the first step, 2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone was synthesized by aldol condensation of vanillin and cyclopentanone under the catalysis of sulphuric acid. Over the optimized condensation, a high carbon yield (82.6%) of 2,5-bis(4-hydroxy-3-methoxybenzylidene) cyclopentanone was achieved at 80 ºC. In the second step, 2,5-bis(4-hydroxy-3-methoxybenzylidene) cyclopentanone was hydrodeoxygenated over the Pd/HY catalyst in cyclohexane as solvent. High carbon yields of 1,3-bis(cyclohexylmethyl)cyclopentane (96.2%) was obtained. The polycycloalkane mixture as obtained has a density of 0.943 g mL-1 and a freezing point of -35 °C. It can be blended into conventional high-density fuels (e.g., JP-10) for rockets and missile propulsion as a potential application.


Asunto(s)
Carbono , Ciclopentanos
7.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903491

RESUMEN

Because of the global necessity to decrease CO2 emissions, biomass-based fuels have become an interesting option to explore; although, bio-oils need to be upgraded, for example, by catalytic hydrodeoxygenation (HDO), to reduce oxygen content. This reaction generally requires bifunctional catalysts with both metal and acid sites. For that purpose, Pt-Al2O3 and Ni-Al2O3 catalysts containing heteropolyacids (HPA) were prepared. HPAs were added by two different methods: the impregnation of a H3PW12O40 solution onto the support and a physical mixture of the support with Cs2.5H0.5PW12O40. The catalysts were characterized by powder X-ray diffraction, Infrared, UV-Vis, Raman, X-ray photoelectron spectroscopy and NH3-TPD experiments. The presence of H3PW12O40 was confirmed by Raman, UV-Vis and X-ray photoelectron spectroscopy, while the presence of Cs2.5H0.5PW12O40 was confirmed by all of the techniques. However, HPW was shown to strongly interact with the supports, especially in the case of Pt-Al2O3. These catalysts were tested in the HDO of guaiacol, at 300 °C, under H2 and at atmospheric pressure. Ni-based catalysts led to higher conversion and selectivity to deoxygenated compound values, such as benzene. This is attributed to both a higher metal and acidic contents of these catalysts. Among all tested catalysts, HPW/Ni-Al2O3 was shown to be the most promising, although it suffered a more severe deactivation with time-on-stream.

8.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005190

RESUMEN

Bio-oil upgrading to produce biofuels and chemicals has become an attractive topic over the past decade. However, the design of cost- and performance-effective catalysts for commercial-scale production remains a challenge. Herein, commercial titania (TiO2) was used as the support of cobalt (Co)-based catalysts (Co/TiO2) due to its low cost, high availability, and practicability for commercialization in the future. The Co/TiO2 catalysts were made with two different forms of TiO2 (anatase [TiO2-A] and rutile [TiO2-R]) and comparatively evaluated in the hydrodeoxygenation (HDO) of 4-propylguaicol (4PG), a lignin-derived model compound. Both Co/TiO2 catalysts promoted the HDO of 4PG following a similar pathway, but the Co/TiO2-R catalyst exhibited a higher activity in the early stages of the reaction due to the formation of abundant Ti3+ species, as detected by X-ray photoelectron spectroscopy (XPS) and hydrogen-temperature programed reduction (H2-TPR) analyses. On the other hand, the Co/TiO2-A catalyst possessed a higher acidity that enhanced propylcyclohexane production at prolonged reaction times. In terms of reusability, the Co/TiO2-A catalyst showed a higher stability (less Co leaching) and reusability compared to Co/TiO2-R, as confirmed by transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses. The HDO of the real bio-oil derived from pyrolysis of Leucaena leucocephala revealed that the Co/TiO2-A catalyst could convert high oxygenated aromatics (methoxyphenols, dimethoxyphenols, and benzenediols) to phenols and enhanced the phenols content, hinting at its potential to produce green chemicals from bio-feedstock.

9.
Angew Chem Int Ed Engl ; 62(46): e202310505, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37534570

RESUMEN

To address the global plastic pollution issues and the challenges of hydrogen storage and transportation, we report a system, based on the hydrodeoxygenation (HDO) of oxygen-containing aromatic plastic wastes, from which organic hydrogen carriers (LOHCs) can be derived. We developed a catalytic system comprised of Ru-ReOx /SiO2 +HZSM-5 for direct HDO of polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene oxide (PPO), and their mixtures, to cycloalkanes as LOHCs, with high yields up to 99 %, under mild reaction conditions. The theoretical hydrogen storage capacity reaches ca. 5.74 wt%. The reaction pathway involves depolymerization of PC into C15 aromatics and C15 monophenols by direct hydrogenolysis of the C-O bond between the benzene ring and ester group, and subsequent parallel hydrogenation of C15 aromatics and HDO of C15 monophenols. HDO of cyclic alcohol is the rate-determining step. The active site is Ru metallic nanoparticles with partially covered ReOx species. The excellent performance is attributed to the synergetic effect of oxophilic ReOx species and Ru metallic sites for C-O hydrogenolysis and hydrogenation, and the promotion effect of HZSM-5 for dehydration of cyclic alcohol. The highly efficient and stable dehydrogenation of cycloalkanes over Pt/γ-Al2 O3 confirms that HDO products can act as LOHCs.

10.
Angew Chem Int Ed Engl ; 62(51): e202314530, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37983726

RESUMEN

The accumulation of waste plastics in landfills and the environment, as well as the contribution of plastics manufacturing to global warming, call for the development of new technologies that would enable circularity for synthetic polymers. Thus far, emerging approaches for chemical recycling of plastics have largely focused on producing fuels, lubricants, and/or monomers. In a recent study, Junde Wei and colleagues demonstrated a new catalytic system capable of converting oxygen-containing aromatic plastic waste into liquid organic hydrogen carriers (LOHCs), which can be used for hydrogen storage. The authors utilized Ru-ReOx /SiO2 materials with zeolite HZSM-5 as a co-catalyst for the direct hydrodeoxygenation (HDO) of oxygen-containing aromatic plastic wastes that yield cycloalkanes as LOHCs with a theoretical hydrogen capacity of ≈5.74 wt % under mild reaction conditions. Subsequent efficiency and stability tests of cycloalkane dehydrogenation over Pt/Al2 O3 validated that the HDO products can serve as LOHCs to generate H2 gas. Overall, their approach not only opens doors to alleviating the severe burden of plastic waste globally, but also offers a way to generate clean energy and ease the challenges associated with hydrogen storage and transportation.

11.
Small ; 18(16): e2106893, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35254000

RESUMEN

Selective hydrogenation and hydrodeoxygenation (HDO) of biomass to value-added products play a crucial role in the development of renewable energy resources. However, achieving a temperature-controlled selectivity within one catalytic system while retaining excellent hydrogenation and HDO performance remains a great challenge. Here, nitrogen/oxygen (N/O) co-doped porous carbon nanosphere derived from resin polymer spheres is synthesized as the host matrix to in situ encapsulate highly dispersed Pd nanoparticles (NPs). Through N/O co-doping, the defects on the surface of carbon structure can serve as active sites to promote substrate adsorption. After a facile H2 O2 post-treatment process, the presence of abundant carboxyl groups on the porous carbon nanospheres can act as acidic sites to replace the use of acidic additives in the HDO process. Additionally, the increased surface oxygen-containing groups improve hydrophilicity to disperse catalysts in aqueous solutions. Owing to the unique highly dispersed Pd NPs and abundant surface defects, the Pd@APF-H2 O2 (2.3 nm) catalysts exhibit excellent catalytic activity and temperature-controlled selectivity for hydrogenation and HDO products of biomass-derived vanillin.


Asunto(s)
Nanosferas , Biomasa , Carbono/química , Hidrogenación , Nitrógeno/química , Oxígeno/química , Porosidad , Temperatura
12.
Chemphyschem ; 23(1): e202100583, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34495572

RESUMEN

The acid-base character of oxide supports is crucial for catalytic reactions. In this work, the acid-base properties of five oxide surfaces common in heterogeneous catalysis were investigated and related to their interaction with monolignol compounds derived from lignin. We have used density functional theory simulations also to understand the role of the surfaces' hydroxylation state. The results show that moderate hydroxyl coverage on the amphoteric γ-Al2 O3 (110) slightly strengthens the oxy-compounds' adsorption due to an increase in Lewis acidity. Similarly, low hydroxyl coverage on the reducible TiO2 (101) enlarges its adsorption capacity by up to 42 % compared with its clean surface. The higher affinity is attributed to the more favourable interaction between the surface-OH groups and the aromatic rings. Overall, the results indicate that hydroxyl coverage enhances the amphoteric and reducible adsorption capacity towards aromatic species.


Asunto(s)
Guayacol , Óxidos , Adsorción , Catálisis , Lignina
13.
Chemphyschem ; 23(24): e202200510, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35983612

RESUMEN

Reduced molybdenum oxides are versatile catalysts for deoxygenation and hydrodeoxygenation reactions. In this work, we have performed spin-polarized DFT calculations to investigate oxygen healing energies on reduced molybdenum oxides (reduced α-MoO3 , γ-Mo4 O11 and MoO2 ). We find that Mo+4 on MoO2 (100) is the most active for abstracting an oxygen from the oxygenated compounds. We further explored CO2 adsorption and dissociation on reduced α-MoO3 (010) and MoO2 (100). In comparison to reduced α-MoO3 (010), CO2 adsorbs more strongly on MoO2 (100). We find that CO2 dissociates on MoO2 (100) via a two-step process, the overall barrier for which is 0.6 eV. This barrier is 1.7 eV lower than that on reduced α-MoO3 (010), suggesting a much higher activity for deoxygenation of CO2 to CO. As H2 dissociation is shown to be the rate-limiting step for hydrodeoxygenation reactions, we also studied activation barriers for H2 chemisorption on MoO2 (100). We find that the chemisorption barriers are 0.7 eV lower than that reported on reduced α-MoO3 (010). Finally, we have studied the dissociation (C-O cleavage) of anisole (a lignin-based biofuel model compound) on MoO2 (100). We find that anisole binds very strongly on MoO2 (100) with an adsorption energy of -1.47 eV. According to Sabatier's principle, strongly adsorbing reactants poison the catalyst surface, which may explain the low activity of MoO2 observed during experiments for hydrodeoxygenation of anisole.


Asunto(s)
Molibdeno , Óxidos , Molibdeno/química , Óxidos/química , Oxígeno/química , Teoría Funcional de la Densidad , Dióxido de Carbono , Anisoles
14.
Catal Today ; 384-386: 197-208, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35992247

RESUMEN

The dehydrogenation and dehydration of formic acid is investigated on the ß-Mo2C (100) catalyst surface using time independent density functional theory. The energetics of the two mechanisms are calculated, and the thermochemistry and kinetics are discussed using the transition state theory. Subsequently, microkinetic modelling of the system is conducted, considering the batch reactor model. The potential energy landscape of the reaction shows a thermodynamically favourable cleavage of H-COOH to form CO; however, the kinetics show that the dehydrogenation mechanism is faster and CO2 is continuously formed. The effect of HCOOH adsorption on the surface is also analysed, in a temperature-programmed desorption, with the conversion proceeding at under 350 K and desorption of CO2 is observed with a selectivity of about 100 %, in line with the experimental reports.

15.
J Environ Manage ; 306: 114429, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007791

RESUMEN

Ambient pressure hydro-deoxygenation (HDO) of the phenolic-rich pyrolysis liquid fraction is a complex task due to the presence multiple phenolic compounds and light oxygenates. The phenolic-rich fraction differs from the overall pyrolysis liquid, known to be prone to re-polymerization and coking in the reactor or of the catalyst. In the present research, hydro-deoxygenation of oxygen-containing compounds in the phenolic fraction over Mo-based catalysts was carried out for the first time. It was found that Mo-based catalysts can successfully upgrade the phenolics into aromatics, the conversion rate was nearly 100%. The small amount of light oxygenates in the phenolic-rich fraction had no obvious effect on the hydro-deoxygenation reaction, the phenolic conversion was more than 95%. After assessing the performance for a representative phenolic model compound, the reaction was also successfully carried out on the phenolic fraction of the real pyrolysis liquid. It can be concluded that the catalysts can also be used for the HDO of the real pyrolysis liquid fraction at atmospheric pressure.


Asunto(s)
Coque , Pirólisis , Presión Atmosférica , Biomasa , Catálisis , Calor , Fenoles
16.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200346, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510929

RESUMEN

The hydrodeoxygenation (HDO) of acetophenone was evaluated in liquid phase and gas phase over monometallic Pt/SiO2, Co/SiO2 and bimetallic Pt-Co/SiO2 catalysts. The influence of reaction time and loading of the catalyst were analysed by following the conversion and products selectivity. Phenylethanol, cyclohexylethanone and cyclohexylethanol are the main products of reaction using the Pt/SiO2 catalyst. By contrast, ethylbenzene and phenylethanol are the only products formed on the Co/SiO2 and Pt-Co/SiO2 catalysts. The bimetallic catalyst is more stable as a function of time and more active towards the HDO process than the monometallic systems. The presence of an organic solvent showed only minor changes in product yields with no effect on the product speciation. Periodic density functional theory analysis indicates a stronger interaction between the carbonyl group of acetophenone with Co than with Pt sites of the mono and bimetallic systems, indicating a key activity of oxophilic sites towards improved selectivity to deoxygenated products. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

17.
Molecules ; 26(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833940

RESUMEN

Recent developments in the transformation of biobased 5-hydroxymethylfurfural (HMF) into a potential liquid fuel, 2,5-dimethylfuran (DMF), are summarised. This review focuses briefly on the history of HMF conversion to DMF in terms of the feedstock used and emphasises the ideal requirements in terms of the catalytic properties needed in HMF transformation into DMF. The recent state of the art and works on HMF transformation into DMF are discussed in comparison to noble metals and non-noble metals as well as bimetallic catalysts. The effect of the support used and the reaction conditions are also discussed. The recommendations for future work and challenges faced are specified.


Asunto(s)
Biocombustibles , Furaldehído/análogos & derivados , Furanos/química , Biomasa , Catálisis , Furaldehído/química , Hidrogenación , Lignina/química , Metales/química
18.
Angew Chem Int Ed Engl ; 60(21): 11991-12000, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33638314

RESUMEN

Herein, a remarkable conjugated bis-guanidinate (CBG) supported zinc hydride, [{LZnH}2 ; L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr); Ar=2,6-Et2 -C6 H3 }] (I) catalyzed partial reduction of heteroallenes via hydroboration is reported. A large number of aryl and alkyl isocyanates, including electron-donating and withdrawing groups, undergo reduction to obtain selectively N-boryl formamide, bis(boryl) hemiaminal and N-boryl methyl amine products. The compound I effectively catalyzes the chemoselective reduction of various isocyanates, in which the construction of the amide bond occurs. Isocyanates undergo a deoxygenation hydroboration reaction, in which the C=O bond cleaves, leading to N-boryl methyl amines. Several functionalities such as nitro, cyano, halide, and alkene groups are well-tolerated. Furthermore, a series of kinetic, control experiments and structurally characterized intermediates suggest that the zinc hydride species are responsible for all reduction steps and breaking the C=O bond.

19.
Angew Chem Int Ed Engl ; 60(40): 21713-21717, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34350671

RESUMEN

Subnanometric metal clusters have attracted extensive attention because of their unique properties as heterogeneous catalysts. However, it is challenging to obtain uniformly distributed metal clusters under synthesis and reaction conditions. Herein, we report a template-guidance protocol to synthesize subnanometric metal clusters uniformly encapsulated in beta-zeolite, with the metal ions anchored to the internal channels of the zeolite template via electrostatic interactions. Pt metal clusters with a narrow size range of 0.89 to 1.22 nm have been obtained on the intersectional sites of beta-zeolite (Pt@beta) with a broad range of Si/Al molar ratios (15-200). The uniformly distributed Pt clusters in Pt@H-beta are subject to strong electron withdrawal by the zeolite, which promotes transfer of active hydrogen, providing excellent activity and stability in hydrodeoxygenation reactions. A general strategy is thus proposed for the encapsulation of subnanometric metal clusters in zeolites with high thermal stability.

20.
Angew Chem Int Ed Engl ; 60(44): 23713-23721, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34409728

RESUMEN

Biofuel production can alleviate reliance on fossil resources and thus carbon dioxide emission. Hydrodeoxygenation (HDO) refers collectively to a series of important biorefinery processes to produce biofuels. Here, well-dispersed and ultra-small Ru metal nanoclusters (ca. 1 nm), confined within the micropores of zeolite Y, provide the required active site intimacy, which significantly boosts the chemoselectivity towards the production of pentanoic biofuels in the direct, one-pot HDO of neat ethyl levulinate. Crucial for improving catalyst stability is the addition of La, which upholds the confined proximity by preventing zeolite lattice deconstruction during catalysis. We have established and extended an understanding of the "intimacy criterion" in catalytic biomass valorization. These findings bring new understanding of HDO reactions over confined proximity sites, leading to potential application for pentanoic biofuels in biomass conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA