Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2300625120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364101

RESUMEN

The dehydrogenation reaction of bioderived ethanol is of particular interest for the synthesis of fuels and value-added chemicals. However, this reaction historically suffered from high energy consumption (>260 °C or >0.8 V) and low efficiency. Herein, the efficient conversion of alcohol to hydrogen and aldehyde is achieved by integrating the thermal dehydrogenation reaction with electrochemical hydrogen transfer at low temperature (120 °C) and low voltage (0.06 V), utilizing a bifunctional catalyst (Ru/C) with both thermal-catalytic and electrocatalytic activities. Specifically, the coupled electrochemical hydrogen separation procedure can serve as electrochemical hydrogen pumps, which effectively promote the equilibrium of ethanol dehydrogenation toward hydrogen and acetaldehyde production and simultaneously purifies hydrogen at the cathode. By utilizing this strategy, we achieved boosted hydrogen and acetaldehyde yields of 1,020 mmol g-1 h-1 and 1,185 mmol g-1 h-1, respectively, which are threefold higher than the exclusive ethanol thermal dehydrogenation. This work opens up a prospective route for the high-efficiency production of hydrogen and acetaldehyde via coupled thermal-electrocatalysis.

2.
Proc Natl Acad Sci U S A ; 120(52): e2317174120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127984

RESUMEN

Converting spent lithium-ion batteries (LIBs) and industrial wastewater into high-value-added substances by advanced electrocatalytic technology is important for sustainable energy development and environmental protection. Here, we propose a self-powered system using a home-made sulfide fuel cell (SFC) to power a two-electrode electrocatalytic sulfion oxidation reaction (SOR)-assisted hydrogen (H2) production electrolyzer (ESHPE), in which the sulfion-containing wastewater is used as the liquid fuel to produce clean water, sulfur, and hydrogen. The catalysts for the self-powered system are mainly prepared from spent LIBs to reduce the cost, such as the bifunctional Co9S8 catalyst was prepared from spent LiCoO2 for SOR and hydrogen evolution reaction (HER). The Fe-N-P codoped coral-like carbon nanotube arrays encapsulated Fe2P (C-ZIF/sLFP) catalyst was prepared from spent LiFePO4 for oxygen reduction reaction. The Co9S8 catalyst shows excellent catalytic activities in both SOR and HER, evidenced by the low cell voltage of 0.426 V at 20 mA cm-2 in ESHPE. The SFC with Co9S8 as anode and C-ZIF/sLFP as cathode exhibits an open-circuit voltage of 0.69 V and long discharge stability for 300 h at 20 mA cm-2. By integrating the SFC and ESHPE, the self-powered system delivers an impressive hydrogen production rate of 0.44 mL cm-2 min-1. This work constructs a self-powered system with high-performance catalysts prepared from spent LIBs to transform sulfion-containing wastewater into purified water and prepare hydrogen, which is promising to achieve high economic efficiency, environmental remediation, and sustainable development.

3.
Nano Lett ; 24(3): 958-965, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207219

RESUMEN

Photoelectrochemical (PEC) water splitting in acidic media holds promise as an efficient approach to renewable hydrogen production. However, the development of highly active and stable photoanodes under acidic conditions remains a significant challenge. Herein, we demonstrate the remarkable water oxidation performance of Ru single atom decorated hematite (Fe2O3) photoanodes, resulting in a high photocurrent of 1.42 mA cm-2 at 1.23 VRHE under acidic conditions. Comprehensive experimental and theoretical investigations shed light on the mechanisms underlying the superior activity of the Ru-decorated photoanode. The presence of single Ru atoms enhances the separation and transfer of photogenerated carriers, facilitating efficient water oxidation kinetics on the Fe2O3 surface. This is achieved by creating additional energy levels within the Fe2O3 bandgap and optimizing the free adsorption energy of intermediates. These modifications effectively lower the energy barrier of the rate-determining step for water splitting, thereby promoting efficient PEC hydrogen production.

4.
Nano Lett ; 24(1): 331-338, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38108571

RESUMEN

Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 µmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.

5.
Small ; 20(16): e2308841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009776

RESUMEN

A facile strategy is developed to fabricate 3 nm RuIrOx nanocrystals anchored onto N-doped hollow carbon for highly efficient and pH-universal overall water splitting and alkaline seawater electrolysis. The designed catalyst exhibits much lower overpotential and superior stability than most previously reported Ru- and Ir-based electrocatalysts for hydrogen/oxygen evolution reactions. It also manifests excellent overall water splitting activities and maintains ≈100% Faradic efficiency with a cell voltage of 1.53, 1.51, and 1.54 V at 10 mA cm-2 for 140, 255, and 200 h in acid, alkaline, and alkaline seawater electrolytes, respectively. The excellent electrocatalytic performance can be attributed to solid bonding between RuIrOx and the hollow carbon skeleton, and effective electronic coupling between Ru and Ir, thus inducing its remarkable electrocatalytic activities and long-lasting stability.

6.
Small ; : e2402679, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970542

RESUMEN

Piezocatalysis, a transformative mechanochemical energy conversion technique, has received considerable attention over the past decade for its role in processes such as hydrogen evolution from water. Despite notable progress in the field, challenges remain, particularly in the areas of limited piezocatalysis efficiency and limited availability of materials requiring a non-centrosymmetric structure. Here, a pioneering contribution is presented by elucidating the piezocatalytic properties of hollow CaTiO3 nanocuboids, a centrosymmetric material with a nominally nonpolar state. Remarkably, CaTiO3 nanocuboids exhibit an impressive hydrogen production rate of 3.44 mmol g-1 h-1 under ultrasonic vibrations, surpassing the performance of the well-established piezocatalyst BaTiO3 (2.23 mmol g-1 h-1). In contrast, commercial CaTiO3 nanoparticles do not exhibit piezocatalytic performance. The exceptional performance of hollow CaTiO3 nanocuboids is attributed to the abundance presence of twin boundaries on the {110} facet within its crystal structure, which can impart significant polarization strength to CaTiO3. Extending the investigation to other centrosymmetric materials, such as SrZrO3 and BaZrO3, the experimental results also demonstrate their commendable properties for piezocatalytic hydrogen production from water. This research underscores the significant potential of centrosymmetric materials in piezocatalysis.

7.
Small ; 20(3): e2304784, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37699758

RESUMEN

Twins in crystal defect, one of the significant factors affecting the physicochemical properties of semiconductor materials, are applied in catalytic conversion. Among the catalysts serving for photocatalytic water splitting, Zn1- x Cdx S has become a hot-point due to its adjustable energy band structure. Via limiting mass transport to control the release rate of anions/cations, twin Zn1- x Cdx S solid solution is prepared successfully, which lays a foundation for the construction of other twin crystals in the future. On twin Zn1- x Cdx S, water tends to be dissociated after being adsorbed by Zn2+ /Cd2+ at twin boundary, then the fast-moving electrons at twin boundary quickly combine with the protons already attached to S2- to form hydrogen. According to the theoretical calculation, not only the intracrystalline electron mobility, but also the extracrystalline capacity of water-adsorption/dissociation and proton-adsorption on the twin boundary are superior to those of the counterpart plane in defect-free phase. The synthetic twin Zn1- x Cdx S apparent quantum efficiency of photocatalysis water splitting for hydrogen reached 82.5% (λ = 420 nm). This research opens up an avenue to introduce twins in crystals and it hopes to shed some light on photocatalysis.

8.
Small ; 20(4): e2304393, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712098

RESUMEN

Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.

9.
Small ; 20(9): e2305906, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857591

RESUMEN

Replacing traditional oxygen evoltion reaction (OER) with biomass oxidation reaction (BOR) is an advantageous alternative choice to obtain green hydrogen energy from electrocatalytic water splitting. Herein, a novel of extremely homogeneous Ni3 S2 nanosheets covered TiO2 nanorod arrays are in situ growth on conductive Ni foam (Ni/TiO2 @Ni3 S2 ). The Ni/TiO2 @Ni3 S2 electrode exhibits excellent electrocatalytic activity and long-term stability for both BOR and hydrogen evolution reaction (HER). Especially, taking glucose as a typical biomass, the average hydrogen production rate of the HER-glucose oxidation reaction (GOR) two-electrode system reached 984.74 µmol h-1 , about 2.7 times higher than that of in a common HER//OER two-electrode water splitting system (365.50 µmol h-1 ). The calculated power energy saving efficiency of the GOR//HER system is about 13% less than that of the OER//HER system. Meanwhile, the corresponding selectivity of the value-added formic acid produced by GOR reaches about 80%. Moreover, the Ni/TiO2 @Ni3 S2 electrode also exhibits excellent electrocatalytic activity on a diverse range of typical biomass intermediates, such as urea, sucrose, fructose, furfuryl alcohol (FFA), 5-hydroxymethylfurfural (HMF), and alcohol (EtOH). These results show that Ni/TiO2 @Ni3 S2 has great potential in electrocatalysis, especially in replacing OER reaction with BOR reaction and promoting the sustainable development of hydrogen production.

10.
Small ; : e2310469, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282141

RESUMEN

Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.

11.
Small ; : e2402219, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634337

RESUMEN

In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.

12.
Small ; 20(31): e2312104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441363

RESUMEN

Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1 h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.

13.
Small ; 20(27): e2305779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764279

RESUMEN

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

14.
Small ; 20(25): e2309906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221704

RESUMEN

On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.

15.
Small ; 20(24): e2306447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38152988

RESUMEN

Due to their anisotropy, 1D semiconductor nanorod-based materials have attracted much attention in the process of hydrogen production by solar energy. Nevertheless, the rational design of 1D heterojunction materials and the modulation of photo-generated electron-hole transfer paths remain a challenge. Herein, a ZnxCd1-xS@ZnS/MoS2 core-shell nanorod heterojunction is precisely constructed via in situ growth of discontinuous ZnS shell and MoS2 NCs on the Zn─Cd─S nanorods. Among them, the Zn vacancy in the ZnS shell builds the defect level, and the nanoroelded MoS2 builds the electron transport site. The optimized photocatalyst shows significant photocatalytic activity without Platinum as an auxiliary catalyst, mainly due to the new interfacial charge transfer channel constructed by the shell vacancy level, the vertical separation and the de-accumulation process of photo-generated electrons and photo-generated holes. At the same time, spectral analysis, and density functional theory (DFT) calculations fully prove that shortening difference of speed between the photogenerated electron and hole movement process is another key factor to enhance the photocatalytic performance. This study provides a new path for the kinetic design of enhanced carrier density by shortening the carrier retention time of 1D heterojunction photocatalysts with improved photocatalytic performance.

16.
Small ; 20(11): e2306273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37936322

RESUMEN

A novel semiconductive Co/Fe-MOF embedded with Fe2 O3 nanocrystals (Fe2 O3 @CoFe-MOF) is developed as a trifunctional electrocatalyst for the urea oxidation reaction (UOR), oxygen evolution reaction (OER), and hydrogen evolution reaction for enhancing the efficiency of the hydrogen production via the urea-assisted overall water splitting. Fe2 O3 @CoFe-TPyP-MOF comprises unsaturated metal-nitrogen coordination sites, affording enriched defects, self-tuned d-band centers, and efficient π-π interaction between different layers. Density functional theory calculation confirms that the adsorption of urea can be optimized at Fe2 O3 @CoFe-TPyP-MOF, realizing the efficient adsorption of intermediates and desorption of the final product of CO2 and N2 characterized by the in situ Fourier transform infrared spectroscopy. The two-electrode urea-assisted water splitting device-assembled with Fe2 O3 @CoFe-TPyP-MOF illustrates a low cell voltage of 1.41 V versus the reversible hydrogen electrode at the current density of 10 mA cm-2 , attaining the hydrogen production rate of 13.13 µmol min-1 in 1 m KOH with 0.33 m urea. The in situ electrochemical Raman spectra and other basic characterizations of the used electrocatalyst uncover that Fe2 O3 @CoFe-TPyP-MOF undergoes the reversible structural reconstruction after the UOR test, while it demonstrates the irreversible reconstruction after the OER measurement. This work redounds the progress of urea-assisted water spitting for hydrogen production.

17.
Small ; : e2403176, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949041

RESUMEN

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

18.
Small ; : e2402981, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838089

RESUMEN

To address the imperative challenge of producing hydrogen in a low-energy consumption electrocatalytic system, this study emphasizes the utilization of thermodynamically favorable biomass oxidation for achieving energy-efficient hydrogen generation. This research integrates ultralow PtO2-loaded flower-like nanosheets (denoted as PtO2@Cu2O/Cu FNs) with Cu0/Cu+ pairs and Pt─O bonds, thereby yielding substantial enhancement in both hydrogen evolution reaction (HER, -0.042 VRHE at 10 mA cm-2) and furfural oxidation reaction (FFOR, 0.09 VRHE at 10 mA cm-2). As validated by DFT calculations, the dual built-in electric field (BIEF) is elucidated as the driving force behind the enhanced activities, in which Pt─O bonds expedite the HER, while Cu+/Cu0 promotes low-potential FFOR. By coupling the FFOR and HER together, the resulting bipolar-hydrogen production system requires a low power input (0.5072 kWh per m3) for producing H2. The system can generate bipolar hydrogen and high value-added furoic acid, significantly enhancing hydrogen production efficiency and concurrently mitigating energy consumption.

19.
Small ; : e2404622, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058229

RESUMEN

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

20.
Chemistry ; 30(15): e202303886, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212975

RESUMEN

Hydrogen production from photocatalysis via the usage of multicomponent photocatalysts represents a promising pathway for carbon peaking and carbon neutrality, owing to their structural advantages in dealing with the three crucial processes in photocatalysis, namely, light harvesting, charge transfer, and surface redox reactions. We demonstrate the fabrication of a MOF-based multicomponent photocatalyst, denoted as semiconductor/MOF/cocatalyst, by a one-pot electrochemical synthetic route. The as-fabricated multicomponent photocatalyst has a clean interface among the components, leading to close connections that contribute to high-quality heterojunction and facilitate photogenerated charge transfer and separation, thereby the efficient hydrogen evolution. The hydrogen production rate of the resultant ZrO2 /Zr-MOF/Pt is 1327 µmol ⋅ g-1 ⋅ h-1 , which is much higher than that of ZrO2 /Zr-MOF (15 µmol ⋅ g-1 ⋅ h-1 ) and pure Zr-MOF (10.1 µmol ⋅ g-1 ⋅ h-1 ), as well as the photodeposited-Pt products ZrO2 /Zr-MOF/PtPD (287 µmol ⋅ g-1 ⋅ h-1 ) and Zr-MOF/PtPD (192 µmol ⋅ g-1 ⋅ h-1 ) obtained by the step-wise synthetic approach. The work gives a good inspiration for the rational design and construction of MOF-based multicomponent photocatalysts through the one-pot electrosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA