Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(35): 15855-15863, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163203

RESUMEN

Heavy metal pollution is a critical environmental issue that has garnered significant attention from the international community. Subcritical hydrothermal liquefaction (HTL) as an emerging green technology has demonstrated remarkable promise in environmental remediation. However, there is limited research on the remediation of highly toxic Cr(VI) using HTL. This study reveals that the HTL reaction of biomass enables the simultaneous reduction and precipitation of Cr(VI). At 280 °C, the reduction of Cr(VI) was nearly complete, with a high reduction rate of 98.9%. The reduced Cr as Cr(OH)3 and Cr2O3 was primarily enriched in hydrochar, accounting for over 99.9% of the total amount. This effective enrichment resulted in the removal of Cr(VI) from the aqueous phase while simultaneously yielding clean liquid compounds like organic acids and furfural. Furthermore, the elevated temperature facilitated the formation of Cr(III) and enhanced its accumulation within hydrochar. Notably, the resulting hydrochar and small oxygenated compounds, especially aldehyde, served as electron donors for Cr(VI) reduction. Additionally, the dissolved Cr facilitated the depolymerization and deoxygenation processes of macromolecular compounds with lignin-like structures, leading to more small oxygenated compounds and subsequently influencing Cr(VI) reduction. These findings have substantial implications for green and sustainable development.


Asunto(s)
Biomasa , Cromo , Cromo/química , Electrones , Restauración y Remediación Ambiental , Oxidación-Reducción
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34725256

RESUMEN

Collecting and removing ocean plastics can mitigate their environmental impacts; however, ocean cleanup will be a complex and energy-intensive operation that has not been fully evaluated. This work examines the thermodynamic feasibility and subsequent implications of hydrothermally converting this waste into a fuel to enable self-powered cleanup. A comprehensive probabilistic exergy analysis demonstrates that hydrothermal liquefaction has potential to generate sufficient energy to power both the process and the ship performing the cleanup. Self-powered cleanup reduces the number of roundtrips to port of a waste-laden ship, eliminating the need for fossil fuel use for most plastic concentrations. Several cleanup scenarios are modeled for the Great Pacific Garbage Patch (GPGP), corresponding to 230 t to 11,500 t of plastic removed yearly; the range corresponds to uncertainty in the surface concentration of plastics in the GPGP. Estimated cleanup times depends mainly on the number of booms that can be deployed in the GPGP without sacrificing collection efficiency. Self-powered cleanup may be a viable approach for removal of plastics from the ocean, and gaps in our understanding of GPGP characteristics should be addressed to reduce uncertainty.


Asunto(s)
Monitoreo del Ambiente/métodos , Plásticos/química , Estudios de Factibilidad , Residuos de Alimentos , Océanos y Mares , Termodinámica , Residuos/análisis
3.
J Environ Manage ; 366: 121856, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032256

RESUMEN

Efficient domestic wastewater management is essential for mitigating the impact of wastewater on human health and the environment. Wastewater management with conventional technologies generates sewage sludge. The present study considered a modelling approach to evaluate various processing pathways to produce energy from the sewage sludge. Anaerobic digestion, gasification, pyrolysis, and hydrothermal liquefaction are analysed in terms of their energy generation potentials with the Aspen Plus software. A techno-economic assessment is performed to assess the economic viability of each pathway. It reveals that gasification appears as the most promising method to produce electricity, with 0.76 kWh/kgdrysludge, followed by anaerobic digestion (0.53 kWh/kgdrysludge), pyrolysis (0.34 kWh/kgdrysludge), and hydrothermal liquefaction (0.13 kWh/kgdrysludge). In contrast, the techno-economic analysis underscores the viability of anaerobic digestion with levelized cost of electricity as 0.02 $/kWh followed by gasification (0.11 $/kWh), pyrolysis (0.14 $/kWh), and hydrothermal liquefaction (2.21 $/kWh). At the same time, if the products or electricity from the processing unit is sold, equivalent results prevail. The present study is a comprehensive assessment of sludge management for researchers and policymakers. The result of the study can also assist policymakers and industry stakeholders in deciding on alternative options for energy recovery and revenue generation from sewage sludge.


Asunto(s)
Aguas del Alcantarillado , India , Eliminación de Residuos Líquidos/métodos , Eliminación de Residuos Líquidos/economía , Anaerobiosis , Aguas Residuales , Electricidad , Modelos Teóricos
4.
J Environ Manage ; 356: 120458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479286

RESUMEN

The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.


Asunto(s)
Clorofila , Aceites de Plantas , Polifenoles , Temperatura , Biomasa , Clorofila A
5.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125060

RESUMEN

We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution.


Asunto(s)
Resinas Epoxi , Microalgas , Microalgas/química , Resinas Epoxi/química , Temperatura , Compuestos Epoxi/química , Resistencia a la Tracción
6.
Environ Sci Technol ; 57(34): 12701-12712, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590157

RESUMEN

Recent restrictions on marine fuel sulfur content and a heightened regulatory focus on maritime decarbonization are driving the deployment of low-carbon and low-sulfur alternative fuels for maritime transport. In this study, we quantified the life-cycle greenhouse gas and sulfur oxide emissions of several novel marine biofuel candidates and benchmarked the results against the emissions reduction targets set by the International Maritime Organization. A total of 11 biofuel pathways via four conversion processes are considered, including (1) biocrudes derived from hydrothermal liquefaction of wastewater sludge and manure, (2) bio-oils from catalytic fast pyrolysis of woody biomass, (3) diesel via Fischer-Tropsch synthesis of landfill gas, and (4) lignin ethanol oil from reductive catalytic fractionation of poplar. Our analysis reveals that marine biofuels' life-cycle greenhouse gas emissions range from -60 to 56 gCO2e MJ-1, representing a 41-163% reduction compared with conventional low-sulfur fuel oil, thus demonstrating a considerable potential for decarbonizing the maritime sector. Due to the net-negative carbon emissions from their life cycles, all waste-based pathways showed over 100% greenhouse gas reduction potential with respect to low-sulfur fuel oil. However, while most biofuel feedstocks have a naturally occurring low-sulfur content, the waste feedstocks considered here have higher sulfur content, requiring hydrotreating prior to use as a marine fuel. Combining the break-even price estimates from a published techno-economic analysis, which was performed concurrently with this study, the marginal greenhouse gas abatement cost was estimated to range from -$120 to $370 tCO2e-1 across the pathways considered. Lower marginal greenhouse gas abatement costs were associated with waste-based pathways, while higher marginal greenhouse gas abatement costs were associated with the other biomass-based pathways. Except for lignin ethanol oil, all candidates show the potential to be competitive with a carbon credit of $200 tCO2e-1 in 2016 dollars, which is within the range of prices recently received in connection with California's low-carbon fuel standard.


Asunto(s)
Aceites Combustibles , Gases de Efecto Invernadero , Animales , Biocombustibles , Lignina , Pirólisis , Madera , Azufre , Carbono , Etanol , Estadios del Ciclo de Vida
7.
Appl Microbiol Biotechnol ; 107(5-6): 2011-2025, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36719433

RESUMEN

Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.


Asunto(s)
Policétidos , Yarrowia , Aguas Residuales , Yarrowia/metabolismo , Fermentación , Policétidos/metabolismo
8.
J Environ Manage ; 330: 117121, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586369

RESUMEN

Developing an efficient photobioreactor (PBR) and reducing freshwater dependence are among the significant challenges for generating 3rd generation biomass feedstock. Addressing these, the present study focused on developing a modified airlift (MoAL) PBR. Its performance was further evaluated and compared with the traditional airlift PBR by cultivating microalgae in dark fermentation spent wash. Lower mixing time and higher interfacial mass transfer coefficient was observed in the MoAL PBR having a perforated draft tube. Experimentally, the MoAL exhibited the maximum biomass concentration of 3.18 g L-1, which was 30% higher than that of the conventional airlift PBR. The semi-continuous operation of the MoAL (with water recycling) achieved the maximum biomass productivity of 0.83 g L-1 d-1, two folds superior to that of batch culture. The comprehensive biomass characterization (proximate, ultimate, and thermochemical) further confirmed its potential for bioenergy application. Considering that, hydrothermal liquefaction of the biomass resulted in a maximum biocrude yield of 31% w/w with a higher heating value (HHV) of 36.6 MJ kg-1. In addition, the biocrude comprised 66.6% w/w lighter fraction (<343 °C), including 21.5% w/w of heavy naphtha, 20.5% w/w of kerosene, and 24.6% w/w of diesel. The results can help develop sustainable technology for simultaneous wastewater remediation and biocrude production.


Asunto(s)
Microalgas , Fotobiorreactores , Biomasa , Fermentación , Agua , Agua Dulce
9.
J Environ Manage ; 348: 119046, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832286

RESUMEN

Sewage sludge management poses challenges due to its environmental impact, varying composition, and stringent regulatory requirements. In this scenario, hydrothermal liquefaction (HTL) is a promising technology for producing biofuel and extracting phosphorus from sewage sludge. However, the toxic nature of the resulting process water (HTL-PW) raises concerns about integrating HTL into conventional wastewater treatment processes. This study investigated the inhibitory effects of HTL-PW on the activity of the main microbial functions in conventional activated sludge. Upon recirculation of the HTL-PW from the excess sludge into the wastewater treatment plant, the level of COD in the influent is expected to increase by 157 mgO2⋅L-1, resulting in 44% nitrification inhibition (IC50 of 197 mg⋅L-1). However, sorption of inhibitory compounds on particles can reduce nitrification inhibition to 27% (IC50 of 253 mg⋅L-1). HTL-PW is a viable carbon source for denitrification, showing nearly as high denitrification rates as acetate and only 17% inhibition at 157 mgO2⋅L-1 COD. Under aerobic conditions, heterotrophic organic nitrogen and organic matter conversion remains unaffected up to 223 mgO2⋅L-1 COD, with COD removal higher than 94%. This study is the first to explore the full integration of HTL in wastewater treatment plants for biofuel production from the excess activated sludge. Potential nitrification inhibition is concerning, and further long-term studies are needed to fully investigate the impacts.


Asunto(s)
Nitrificación , Purificación del Agua , Aguas del Alcantarillado , Biocombustibles , Óxido de Magnesio , Purificación del Agua/métodos , Nitrógeno , Reactores Biológicos , Desnitrificación , Eliminación de Residuos Líquidos/métodos
10.
J Environ Manage ; 347: 119075, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769474

RESUMEN

This study evaluated two pathways to recover the nitrogen-content of wastewater sludges as ammonium sulfate (AmS) for use as fertilizer. The first pathway entails sludge stabilization by hydrothermal liquefaction (HTL) followed by recovery of AmS from the resulting aqueous product by gas permeable membrane (GPM) separation. The second one entails stabilization of the sludges by anaerobic digestion (AD) followed by recovery of AmS from the resulting centrate by GPM separation. A bench-scale GPM reactor is shown to be capable of recovering >90% of N in the feed. Recoveries of NH3-N in the HTL-pathway ranged 96-100% in 5.5-7.5 h at mass removal rates of 0.2-0.3 g N/day, yielding 3.3-6.0 g AmS/L of feed. Recoveries of 98% were noted in the AD-pathway in 4 h at mass removal rates of 0.06-0.97 g N/day and a yield of 1.7-2.1 g AmS/L of feed. Inductively coupled plasma optical emission spectrometer analysis confirmed that both pathways yielded AmS meeting the US EPA and European region guidelines for land application. The GPM reactor enabled higher nitrogen-recoveries in the HTL-pathway than those reported for current practice of AD followed by ammonia stripping, ion exchange, reverse osmosis, and/or struvite precipitation (96-100% vs. 50-90%). A process model for the GPM reactor is validated using performance data on three different feedstocks.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Sulfato de Amonio , Estudios de Factibilidad , Nitrógeno , Reactores Biológicos
11.
Molecules ; 28(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38138616

RESUMEN

Hydrothermal liquefaction (HTL) represents a beacon of scientific innovation, which unlocks nature's alchemical wonders while reshaping the waste-to-energy platform. This transformative technology offers sustainable solutions for converting a variety of waste materials to valuable energy products and chemicals-thus addressing environmental concerns, inefficiencies, and high costs associated with conventional waste-management practices. By operating under high temperature and pressure conditions, HTL efficiently reduces waste volume, mitigates harmful pollutant release, and extracts valuable energy from organic waste materials. This comprehensive review delves into the intricacies of the HTL process and explores its applications. Key process parameters, diverse feedstocks, various reactor designs, and recent advancements in HTL technology are thoroughly discussed. Diverse applications of HTL products are examined, and their economic viability toward integration in the market is assessed. Knowledge gaps and opportunities for further exploration are accordingly identified, with a focus on optimizing and scaling up the HTL process for commercial applications. In conclusion, HTL holds great promise as a sustainable technology for waste management, chemical synthesis, and energy production, thus making a significant contribution to a more sustainable future. Its potential to foster a circular economy and its versatility in producing valuable products underscore its transformative role in shaping a more sustainable world.

12.
Waste Manag Res ; 41(5): 977-986, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36404769

RESUMEN

Due to sewage sludge being an abundant biobased resource, and with the number of biogas plants utilizing sewage sludge increasing, digested sewage sludge (DSS) is a promising feedstock for producing bio-oil. This study uses DSS from a biogas plant to produce bio-oil in a hydrothermal liquefaction process adjusting time from 2 to 6 hours, temperature from 280 to 380°C and the presence of a base as a depolymerization agent and potential catalyst. High conversion yields are obtained, with the maximum of 58 wt% on a dry, ash free basis and an energy recovery of up to 94%. The oils contain compounds with a potential for utilization as biofuels and building blocks, especially fatty acids as biodiesel feedstock and biobased phenols, glycols and aliphatic alcohols.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Temperatura , Anaerobiosis
13.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296705

RESUMEN

In this study, we investigate the hydrothermal liquefaction (HTL) of PET separated from a densified postconsumer plastic mix, with the aim of recovering its monomer. This second raw material is made up of 90% polyolefin, while the remaining 10% is made up of PET, traces of metals, paper, and glass. After preliminary separation by density in water, two batch experiments were performed on the sunken fraction (composed mainly of PET) in a stainless steel autoclave at 345 °C for 30 and 20 min. Both trials resulted in similar yields of the three phases. In particular, the solid yield is around 76% by weight. After a purification step, this phase was analyzed by UV-Vis, 1H-NMR, and FTIR spectroscopy and resulted to be constituted by terephthalic acid (TPA), a product of considerable industrial interest. The study proved that the hydrothermal liquefaction process coupled with density separation in water is effective for obtaining TPA from a densified postconsumer plastic mix, which can be used for new PET synthesis.


Asunto(s)
Ácidos Ftálicos , Plásticos , Acero Inoxidable , Agua/química , Temperatura , Biocombustibles
14.
J Environ Manage ; 290: 112627, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991767

RESUMEN

Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.


Asunto(s)
Biocombustibles , Microalgas , Biomasa , Fuentes Generadoras de Energía , Combustibles Fósiles
15.
J Environ Manage ; 298: 113436, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358935

RESUMEN

This study investigated effects of different thermal processes on characteristics of activated carbon to produce efficient biosorbents or supercapacitors using biomass resources. Pyrolysis char and hydrochar obtained from woody biomass were used as precursors for activated carbon under different atmospheric conditions (N2 and air). In order to provide functional groups on the carbon surface, activated carbon under N2 condition was subsequently acidified by HNO3 and the other was simultaneously acidified under air condition. Additionally, potential for application as Pb2+ adsorbent and supercapacitor was evaluated. Thermochemical behaviors such as bonding cleavage and dehydration during activation processes were observed by TG and Py-GCMS analysis. Elemental analysis, FT-IR, Raman spectroscopy, and XPS analysis were carried out to confirm changes in structures of each carbon products. New plausible reaction mechanism for this observation was suggested with respect to the formation of a key intermediate in the presence of excess air. As for performance in applications, air activated carbon using hydrochar exhibited high versatility to function as both Pb2+ adsorbent (~41.1 mg/g) and energy storage material (~185.9 F/g) with high specific surface area, mesopore ratio, surface functional groups.


Asunto(s)
Carbón Orgánico , Pirólisis , Biomasa , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
16.
Waste Manag Res ; 39(1): 165-173, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32951533

RESUMEN

Kitchen waste (KW) has gradually become a prominent problem in municipal solid waste treatment. Hydrothermal liquefaction (HTL) is a promising method used to make fuel oil from food and KW. However, the upgrading of bio-oil is particularly important for the sake of industrial reuse. In this study, the KW from university restaurants was subjected to HTL experiments in order to study theoretical feasibility. With the change of conversion temperature and residence time, the optimal conversion working conditions in this study were determined according to the quality and yield of the bio-oil. Moreover, the bio-oil upgrading effects of different additives (hydrogen chloride, sodium hydroxide, and iron(III) chloride) on the HTL of KW were studied. Alkaline additives have an inhibitory effect on the bio-oil yield and positive effect on coke yield. Acidic additives and iron (Fe)-containing additives can promote bio-oil yield. As an important aspect of upgrading, the effect on the nitrogen content of bio-oil with additives was revealed. The alkaline and Fe-containing additives have little effect on reducing the viscosity of the bio-oil while with the appropriate ratio (2.5 mol•kg-1) of acidic additives to the raw material, the static and dynamic fluidity of the oil phase products are reduced to about 0.1 Pa•s.


Asunto(s)
Biocombustibles , Compuestos Férricos , Biomasa , Humanos , Aceites de Plantas , Polifenoles , Temperatura , Agua
17.
Appl Microbiol Biotechnol ; 103(2): 673-684, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474725

RESUMEN

Increasing the overall carbon and energy efficiency by integration of thermal processes with biological ones has gained considerable attention lately, especially within biorefining. A technology that is capable of processing wet feedstock with good energy efficiency is advantageous. Such a technology, exploiting the special properties of hot compressed water is called hydrothermal liquefaction. The reaction traditionally considered to take place at moderate temperatures (200-350 °C) and high pressures (10-25 MPa) although recent findings show the benefits of increased pressure at higher temperature regions. Hydrothermal liquefaction is quite robust, and in theory, all wet feedstock, including residues and waste streams, can be processed. The main product is a so-called bio-crude or bio-oil, which is then further upgraded to fuels or chemicals. Hydrothermal liquefaction is currently at pilot/demo stage with several lab reactors and a few pilots already available as well as there are a few demonstration plants under construction. The applied conditions are quite severe for the processing equipment and materials, and several challenges remain before the technology is commercial. In this review, a description is given about the influence of the feedstock, relevant for integration with biological processing, as well as the processing conditions on the hydrothermal process and products composition. In addition, the relevant upgrading methods are presented.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Calor , Presión Hidrostática , Plantas/química , Agua , Biotecnología/tendencias , Plantas/efectos de la radiación
18.
Eur J Mass Spectrom (Chichester) ; 24(5): 363-374, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29665728

RESUMEN

Yields of liquid products (bio-oil and residual organics in aqueous solution) of hydrothermal liquefaction (at 300℃ and 60 min) of own cultivated Arthrospira platensis using different solvents have been determined. Nonpolar hexane, moderately polar dichloromethane, and relatively more polar acetonitrile have been used. High-resolution mass spectrometry based on linear quadrupole ion trap and Fourier transform mass spectrometer (LTQ FT) has been used for liquid sample characterization. Concentration of bio-oil in a unit of solvent volume after solvent extraction took the following arrangement: acetonitrile > dichloromethane > hexane. Concentration of residual organics in a unit of aqueous solution after solvent extraction took the following arrangement: hexane >dichloromethane > acetonitrile. Yield of total organics was arranged as follows: hexane > dichloromethane > acetonitrile. Content of carbon in bio-oil was increased and the content of oxygen was decreased with the increasing of solvent polarity. From mass spectrometric analysis it was established that in the positive electrospray ionization (ESI) mode the compounds containing two nitrogen atoms dominate and the considerable portion of the compounds containing single nitrogen atom are also presented for both bio-oil and residual organics samples. In the negative ESI mode the compounds containing four oxygen atoms dominated except bio-oil obtained using hexane where the compounds containing two oxygen atoms dominated. Bio-oil fraction had highly saturated compounds with low double bond equivalent values while the compounds of the residual organics fraction had large double bond equivalent values.

19.
Energy Convers Manag ; 157: 239-245, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29449755

RESUMEN

In this study, human feces were hydrothermal liquefied and converted into biocrude over Ni-Tm/TiO2 catalyst. The influence of catalysts, reaction temperature, and holding time on the distribution of products and element content of biocrude was assessed. The biocrude yield increased to 53.16% with a reaction temperature of 330 °C, a holding time of 30 min, and adding Ni-Tm/TiO2 catalyst while the liquefaction conversion peaked at 89.61%. The biocrude had an HHV of 36.64 MJ/kg and was similar to heavy crude oil. The biocrude is rich in fatty acid amides, esters, and oxygen-containing-only heteroatom-ring compounds as well as some nitrogen-containing heteroatom-ring compounds. The main gaseous products were CO2, CH4, and C2H6. Hydrothermal liquefaction over Ni-Tm/TiO2 catalyst could be a potential method to handle human excrement treatment and produce biofuel.

20.
Anal Bioanal Chem ; 408(8): 2171-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26804738

RESUMEN

Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2) > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.


Asunto(s)
Biocombustibles/análisis , Biomasa , Grano Comestible/química , Formiatos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Reactores Biológicos , Destilación , Temperatura , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA