Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Funct Integr Genomics ; 24(4): 122, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980439

RESUMEN

Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. The clear cell RCC subtype is closely linked to a poor prognosis due to its rapid progression. Circular RNA (circRNA) is a novel class of regulatory RNA molecules that play a role in the development of ccRCC, although their functions have not been fully elucidated. In this study, we identified a significant downregulation of circ-IP6K2 in ccRCC tissues based on data from the GSE100186 dataset. The decreased expression of circ-IP6K2 correlated with the progression of TNM stage and histological grade, and was also associated with decreased overall survival rates in ccRCC patients. Moreover, our findings revealed that circ-IP6K2 expression suppressed proliferation, migration, and invasion capabilities in vitro, and inhibited xenograft growth in vivo. Mechanistically, circ-IP6K2 acted as a sponge for miR-1292-5p in ccRCC cells, which in turn targeted the 3'UTR of CAMK2N1, leading to a decrease in its expression. CAMK2N1 was identified as a tumor suppressor that negatively regulated the ß-catenin/c-Myc oncogenic signaling pathway. Additionally, we confirmed a positive correlation between the expression of circ-IP6K2 and CAMK2N1 in ccRCC. Circ-IP6K2 functions to impede the progression of ccRCC by modulating the miR-1292-5p/CAMK2N1 axis. These findings shed new light on the molecular mechanisms driving ccRCC progression and suggest potential therapeutic targets for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Fosfotransferasas (Aceptor del Grupo Fosfato) , ARN Circular , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
2.
J Enzyme Inhib Med Chem ; 38(1): 2193866, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37013838

RESUMEN

Inositol polyphosphates (IPs) are a group of inositol metabolites that act as secondary messengers for external signalling cues. They play various physiological roles such as insulin release, telomere length maintenance, cell metabolism, and aging. Inositol hexakisphosphate kinase 2 (IP6K2) is a key enzyme that produces 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-IP7), which influences the early stages of glucose-induced exocytosis. Therefore, regulation of IP6Ks may serve as a promising strategy for treating diseases such as diabetes and obesity. In this study, we designed, synthesised, and evaluated flavonoid-based compounds as new inhibitors of IP6K2. Structure-activity relationship studies identified compound 20s as the most potent IP6K2 inhibitor with an IC50 value of 0.55 µM, making it 5-fold more potent than quercetin, the reported flavonoid-based IP6K2 inhibitor. Compound 20s showed higher inhibitory potency against IP6K2 than IP6K1 and IP6K3. Compound 20s can be utilised as a hit compound for further structural modifications of IP6K2 inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Flavonoides , Insulina , Fosfotransferasas (Aceptor del Grupo Fosfato) , Flavonoides/farmacología , Inositol , Transducción de Señal , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología
3.
J Neurosci ; 38(34): 7409-7419, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30006360

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks) regulate various biological processes. Among pyrophosphates generated by IP6Ks, diphosphoinositol pentakisphosphate (IP7), and bis-diphosphoinositol tetrakisphosphate have been extensively characterized. IP7 is produced in mammals by a family of inositol hexakisphosphate kinases, IP6K1, IP6K2, and IP6K3, which have distinct biological functions. We report that IP6K2 binds protein 4.1.N with high affinity and specificity. Nuclear translocation of 4.1N, which is required for its principal functions, is dependent on IP6K2. Both of these proteins are highly expressed in granule cells of the cerebellum where their interaction regulates Purkinje cell morphology and cerebellar synapses. The deletion of IP6K2 in male/female mice elicits substantial defects in synaptic influences of granule cells upon Purkinje cells as well as notable impairment of locomotor function. Moreover, the disruption of IP6K2-4.1N interactions impairs cell viability. Thus, IP6K2 and its interaction with 4.1N appear to be major determinants of cerebellar disposition and psychomotor behavior.SIGNIFICANCE STATEMENT Inositol phosphates are produced by a family of inositol hexakisphosphate kinases (IP6Ks)-IP6K1, IP6K2, and IP6K3. Of these, the physiological roles of IP6K2 in the brain have been least characterized. In the present study, we report that IP6K2 binds selectively to the neuronal protein 4.1N. Both of these proteins are highly expressed in granule cells of the cerebellum. Using IP6K2 knock-out (KO) mice, we establish that IP6K2-4.1N interactions in granule cells regulate Purkinje cell morphology, the viability of cerebellar neurons, and psychomotor behavior.


Asunto(s)
Cerebelo/fisiología , Proteínas del Citoesqueleto/fisiología , Proteínas de la Membrana/fisiología , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/fisiología , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Supervivencia Celular , Cerebelo/citología , Cerebelo/enzimología , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Unión Proteica , Desempeño Psicomotor/fisiología , Células de Purkinje/enzimología , Células de Purkinje/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/fisiología
4.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817960

RESUMEN

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

5.
Bioengineered ; 13(2): 3370-3382, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35156508

RESUMEN

Our previous studies indicate that long noncoding RNA (lncRNA) LINC00467 can act as an oncogene to participate in the malignant progression of glioma, but the underlying molecular mechanism remains to be studied further. This study aimed to explore the biological role of the LINC00467/miR-339-3p/ inositol hexakisphosphate kinase 2 (IP6K2) regulatory axis in glioma. The Cancer Genome Atlas (TCGA), Oncomine databases and reverse transcription­quantitative PCR (RT­qPCR) were used to analyze IP6K2 expression in glioma. RT-PCR, EdU and transwell assays were conducted to observe the effect of IP6K2 on glioma cell proliferation, migration and invasion. Using bioinformatics analysis, RT-PCR, and dual luciferase reporter gene assay, the potential role of the LINC00467/miR-339-3p/IP6K2 regulatory axis in glioma was verified. The results showed that IP6K2 was up-regulated in glioma tissues and cell lines. Moreover, the expression level of IP6K2 was correlated with the clinical features of glioma patients. In vitro and in vivo experiments indicated that IP6K2 overexpression could promote the proliferation, migration, and invasion of glioma cells. Further bioinformatics analysis and in vitro assays revealed that LINC00467 could promote IP6K2 expression by binding to miR-339-3p and promote the malignant progression of glioma. Overall, LINC00467 could upregulate IP6K2 by binding to miR-339-3p and promote the proliferation, migration, and invasion of glioma cells. The LINC00467/miR-339-3p/IP6K2 regulatory axis might be a potential therapeutic target for glioma.


Asunto(s)
Glioma , MicroARNs , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)
6.
Cancer Biomark ; 28(2): 169-180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176627

RESUMEN

BACKGROUND: Glioma is considered to be one of the most common and lethal malignant brain tumors, accounting for 40% to 50% of brain tumors. Long non-coding RNAs (lncRNAs) have been widely proved to play an irreplaceable role in the tumorigenesis and progression. Nevertheless, the role of LINC00467 in glioblastoma remained unclear. AIM: The current study was aimed to explore the functional mechanism of LINC00467 in glioblastoma. METHODS: The expression of LINC00467/miR-339-3p/IP6K2 glioblastoma tissues and cells was evaluated by RT-qPCR. The protein expression of genes (cleaved PARP, PARP, cleaved caspase 3, caspase 3, Bax, Bcl-2 and IP6K2) was measured by western blot assay. Then role of LINC00467 was demonstrated by EdU, colony formation, flow cytometry and TUNEL assays. The relationship between miR-339-3p and LINC00467/IP6K2 was validated by RNA pull down and luciferase reporter assays. RESULTS: The expression of LINC00467 was upregulated in glioblastoma tissues and cells. LINC00467 knockdown suppressed cell proliferation but activated cell apoptosis. Further, LINC00467 high expression was associated with shorter overall survival rate in glioblastoma patients. Further, LINC00467 could bind with miR-339-3p, and IP6K2 was targeted by miR-339-3p. IP6K2 expression was regulated by LINC00467/miR-339-3p in a ceRNA pattern. Moreover, LINC00467 could regulate the development of glioblastoma via miR-339-3p/IP6K2 axis. CONCLUSIONS: LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis, which may enlighten to find a novel therapeutic tactic for glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroARNs/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , ARN Largo no Codificante/metabolismo , Apoptosis/genética , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA