Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; : e31446, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311471

RESUMEN

Intestinal epithelial injury is one of the typical symptoms associated with intestinal inflammation and diarrhea, and the repair of the intestinal epithelium intricately linked to cell migration. Here, we test the hypothesis that maslinic acid (MA) regulates porcine intestinal epithelial cell migration by inhibiting focal adhesion kinase (FAK)/AKT signaling pathway. In this experiment, the optimal concentration of MA (0.5 µg/mL) on IPEC-J2 cell viability was selected to investigate the effect under low-dose lipopolysaccharide (LPS) (1 µg/mL) conditions. Transcriptome sequencing and polymerase chain reaction array results revealed that MA could alleviate LPS-induced the gene expressions decreasing in focal adhesion signaling pathway. From the pathway map analysis and western blot analysis results, MA alleviated the LPS-induced decrease in FAK protein expression mainly by promoting FAK protein phosphorylation, which in turn alleviated the decrease in cell migration and formation of cytoskeleton protein Vinculin and F-actin, the above results were verified by FAK phosphorylation inhibitors Defactinib. The molecular docking and immunoprecipitation further verified that MA could bind to PTEN protein and significantly inhibit its interaction with FAK protein, blocking the function of PTEN to inhibit FAK phosphorylation finally shown to promote the level of FAK phosphorylation, meanwhile LPS inhibited FAK protein expression and its binding to PKC and PTEN proteins. Our study revealed the role of MA and LPS in FAK protein, and increased understanding of MA anti-inflammatory mechanism.

2.
Biochem Biophys Res Commun ; 734: 150460, 2024 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-39083968

RESUMEN

Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/ß-catenin pathway-associated ß-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of ß-catenin and TCF4. To confirm the involvement of the Wnt/ß-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets ß-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/ß-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.


Asunto(s)
Proliferación Celular , Células Epiteliales , Mucosa Intestinal , Quercetina , Vía de Señalización Wnt , Animales , Quercetina/análogos & derivados , Quercetina/farmacología , Proliferación Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Porcinos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/citología , beta Catenina/metabolismo , beta Catenina/genética , Intestinos/citología , Intestinos/efectos de los fármacos
3.
BMC Vet Res ; 20(1): 125, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561794

RESUMEN

BACKGROUND: Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS: The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS: Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.


Asunto(s)
Apoptosis , Ácidos Docosahexaenoicos , Animales , Porcinos , Ácidos Docosahexaenoicos/farmacología , Tunicamicina/farmacología , Estrés del Retículo Endoplásmico
4.
Environ Toxicol ; 39(6): 3537-3547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469959

RESUMEN

The antioxidant properties of crocin are attracting interest, yet the underlying mechanisms by which crocin mitigates oxidative stress-induced intestinal damage have not been determined. This study aimed to elucidate the effects of crocin on oxidative stress, apoptosis, and intestinal epithelial injury in intestinal epithelial cells (IPEC-J2). Using an H2O2-induced oxidative stress model in IPEC-J2 cells, crocin was added to assess its effects. Cell viability and apoptosis were evaluated using methyl thiazolyl tetrazolium assays and flow cytometry. Additionally, oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and malondialdehyde (MDA), were quantified. We investigated, in which cell oxidation and apoptosis were measured at the gene and protein levels and employed transcriptome analysis to probe the mechanism of action and validate relevant pathways. The results showed that crocin ameliorates H2O2-induced oxidative stress by reducing ROS and MDA levels and by countering the reductions in CAT, total antioxidant capacity, and SOD. Crocin also attenuates the upregulation of key targets in the Nrf2 pathway. Furthermore, it effectively mitigated IPEC-J2 cell apoptosis caused by oxidative stress, as evidenced by changes in cell cycle factor expression, apoptosis rate, mitochondrial membrane potential, and apoptosis pathway activity. In addition, crocin preserves the integrity of the intestinal barrier by protecting tight junction proteins against oxidative stress. Transcriptome sequencing analysis suggested that the mitochondrial pathway may be a crucial mechanism through which crocin exerts its protective effects. In summary, crocin decreases oxidative stress molecule formation, inhibits Nrf2 pathway activity, prevents apoptosis-induced damage, enhances oxidative stress resistance in IPEC-J2 cells, and maintains redox balance in the pig intestine.


Asunto(s)
Antioxidantes , Apoptosis , Carotenoides , Peróxido de Hidrógeno , Estrés Oxidativo , Especies Reactivas de Oxígeno , Carotenoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Línea Celular , Peróxido de Hidrógeno/toxicidad , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000093

RESUMEN

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.


Asunto(s)
Apoptosis , Curcumina , Estrés del Retículo Endoplásmico , Tricotecenos , Tricotecenos/farmacología , Tricotecenos/toxicidad , Animales , Curcumina/farmacología , Porcinos , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396878

RESUMEN

Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.


Asunto(s)
Antracenos , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , Línea Celular , Virus de la Diarrea Epidémica Porcina/fisiología , Proteína X Asociada a bcl-2/genética , Proteína p53 Supresora de Tumor/genética , Tibet
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612450

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Asunto(s)
Anticuerpos Biespecíficos , Escherichia coli Enterotoxigénica , Inmunoglobulinas , Anticuerpos de Cadena Única , Animales , Porcinos , Anticuerpos de Cadena Única/farmacología , Pollos , Diarrea/veterinaria
8.
J Sci Food Agric ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081254

RESUMEN

BACKGROUND: De-oiled rice bran (DORB), a substantial yet underutilized byproduct of rice processing, boasts a rich composition of active ingredients but suffers from limited application. Previous studies have indicated that enzymatic or fermentation treatments enhanced these active components. In this study, lactobacilli and complex enzymes were employed to co-treat DORB, involving the determination of the changes in active components and functionalities of DORB extract (DORBE) before and after this treatment. RESULTS: Following fermentation-enzymolysis, the total phenol and total flavonoid contents in DORBE were significantly increased by 43.59% and 55.10%, reaching 19.66 and 34.34 g kg-1, respectively. Antioxidant tests in vitro demonstrated that the co-treatment enhanced the scavenging activities of DPPH, hydroxyl and ABTS radicals. Porcine intestinal epithelial cell experiments revealed that, compared to DORBE, the fermentation and enzymolysis DORBE (FDORBE) exhibited significantly improved cell viability and catalase activity as well as scavenging capacity for reactive oxygen species and malondialdehyde after induction by H2O2. Furthermore, FDORBE restored the decreased mRNA expression levels of Nrf2, HO-1 and NQO1 in the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway stimulated by H2O2. CONCLUSION: Fermentation-enzymolysis co-treatment increases the contents of bioactive components of DORBE and enhances its antioxidant capacity, leading to a better protection against intestinal disorders induced by oxidative stress, suggesting that this co-treatment is a rational and effective strategy to increase the value of grains and promotes the use of DORB as a functional feed in animal production. © 2024 Society of Chemical Industry.

9.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 194-205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37675629

RESUMEN

Inflammatory response induced by biological stress usually occurs in weaning piglets, it reduces the production performance of piglets and even causes death. Tert-butylhydroquinone (TBHQ) is a food additive that has the effect of anti-inflammation and anti-oxidation. However, there are few reports related to the protective mechanisms of TBHQ on lipopolysaccharide (LPS) induced injury in intestinal porcine epithelial (IPEC-J2) cells. Quantitative real-time polymerase chain reaction and western blot analysis, respectively, detected the mRNA levels and protein expressions related to pyroptosis, tight junction (TJ) protein and high-mobility group box 1/toll-like receptor 4/nuclear factor kappa-B (HMGB1/TLR4/NF-κB) axis. Localisation and expression of NOD-like receptor pyrin domain containing 3 (NLRP3), HMGB1 and P-NF-κB proteins detected by immunofluorescence. The results showed that TBHQ (12.5 and 25 µM) can increase cell activity and reduce intracellular lactate dehydrogenase (LDH) levels in a dose-dependent manner. LPS significantly decreases cell viability and increases the LDH level. However, pretreatment with TBHQ evidently increases cell viability and decreases the LDH level of IPEC-J2 cells. In addition, treatment with LPS decreased the mRNA level and protein expression of zonula occludens-1, occludin and claudin-1, and increased the mRNA level and protein expression of pyroptosis and HMGB1/TLR4/NF-κB axis. Interestingly, pretreatment with TBHQ increased the TJ protein expressions as well as decreased the mRNA level and protein expressions of pyroptosis and HMGB1/TLR4/NF-κB axis. Moreover, the results of immunofluorescence showed that TBHQ significantly reduced the expression of NLRP3, HMGB1 and P-NF-κB in LPS-induced injury of IPEC-J2 cells. Therefore, we come to the conclusion that TBHQ attenuates LPS-induced pyroptosis in IPEC-J2 cells through downregulation of the HMGB1/TLR4/NF-κB axis, TBHQ may become a potential feed additive for preventing inflammatory diarrhoea in piglets.


Asunto(s)
Proteína HMGB1 , FN-kappa B , Animales , Porcinos , FN-kappa B/genética , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Piroptosis , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , ARN Mensajero
10.
Artículo en Inglés | MEDLINE | ID: mdl-38689491

RESUMEN

Soybean allergen entering the body is the initial step to trigger intestinal allergic response. However, it remains unclear how glycinin, the major soybean allergen, is transported through the intestinal mucosal barrier. The objective of this study was to elucidate the pathway and mechanism of glycinin hydrolysate transport through the intestinal epithelial barrier using IPEC-J2 cell model. Purified glycinin was digested by in vitro static digestion model. The pathway and mechanism of glycinin hydrolysates transport through intestinal epithelial cells were investigated by cellular transcytosis assay, cellular uptake assay, immunoelectron microscopy and endocytosis inhibition assay. The glycinin hydrolysates were transported across IPEC-J2 cell monolayers in a time/dose-dependent manner following the Michaelis equation. Immunoelectron microscopy showed a number of glycinin hydrolysates appeared in the cytoplasm, but no glycinin hydrolysates were observed in the intercellular space of IPEC-J2 cells. The inhibitors, colchicine, chlorpromazine and methyl-ß-cyclodextrin, significantly inhibited the cellular uptake of glycinin hydrolysates. The glycinin hydrolysates crossed IPEC-J2 cell monolayers through the transcellular pathway. Both clathrin- and caveolae-dependent endocytosis were involved in the epithelial uptake of the hydrolysates. These findings provided potential targets for the prevention and treatment of soybean allergy.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39037063

RESUMEN

Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.

12.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116760

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Proteínas Quinasas Activadas por AMP , Línea Celular , Células Epiteliales , Perfilación de la Expresión Génica , Gastroenteritis Porcina Transmisible/genética
13.
Microb Pathog ; 181: 106181, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276895

RESUMEN

Clostridium perfringens (C. perfringens) beta2 (CPB2) toxin may induce necrotizing enteritis (NE) in pigs. Sirtuin1 (SIRT1) is involved in inflammatory intestinal diseases and affects intestinal barrier function. However, the effects of SIRT1 on piglet intestinal disease caused by CPB2 toxin are unclear. This study revealed the role of pig SIRT1 in CPB2 toxin-exposed intestinal porcine epithelial cells (IPEC-J2). Herein, we manifested that SIRT1 was dramatically decreased in IPEC-J2 cells infected with CPB2 toxin. Subsequently, we silenced and overexpressed SIRT1 using siRNA and a overexpression vector in CPB2 toxin-treated IPEC-J2 cells. The results indicated that overexpression of SIRT1 suppressed reactive oxygen species (ROS) generates, the expression tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and Bax, nuclear factor-kappa B (NF-κB p65), phospho (p)-NF-kB p65 and lactate dehydrogenase (LDH) activity and apoptosis in CPB2 toxin-treated IPEC-J2 cells, and increased IL-10, mitochondrial membrane potential (ΔΨm), Bcl-2, Claudin1 and Occludin levels and cell viability. These results indicated that SIRT1 protects IPEC-J2 cells against CPB2 toxin-induced oxidative damage and tight junction (TJ) disruption, which provides a theoretical basis for further study of the molecular regulatory mechanism of SIRT1 in C. perfringens-infected NE in piglets.


Asunto(s)
Sirtuina 1 , Toxinas Biológicas , Animales , Células Epiteliales , Intestinos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Porcinos
14.
Ecotoxicol Environ Saf ; 262: 115147, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37343485

RESUMEN

Nanoplastics smaller than 1 µm accumulate as anthropogenic material in the food chain, but only little is known about their uptake and possible effects on potentially strongly exposed cells of the small intestine. The aim of the study was to observe the uptake of 100 nm polystyrene nanoplastics into a non-tumorigenic small intestine cell culture model (IPEC-J2 cells) and to monitor the effects on cell growth and gene regulation, compared to a 100 nm non-plastic silica nanoparticle reference. The intracellular uptake of both types of nanoparticles was proven via (confocal) fluorescence microscopy and complemented with transmission electron microscopy. Fluorescence microscopy showed a growth phase-dependent uptake of nanoparticles into the cells, hence further experiments included different time points related to epithelial closure, determined via electric cell substrate impedance sensing. No retardations in epithelial closure of cells after treatment with polystyrene nanoparticles could be found. In contrast, epithelial cell closure was partly negatively influenced by silica nanoparticles. An increased production of organic nanoparticles, like extracellular vesicles, was not measurable via nanoparticle tracking analysis. An assessment of messenger RNA by next generation sequencing and subsequent pathway analysis revealed that the TP53 pathway was influenced significantly by the polystyrene nanoparticle treatment. In both treatments, dysregulated mRNAs were highly enriched in the NOTCH signaling pathway compared to the non-particle control.

15.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298392

RESUMEN

Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Línea Celular , Peróxido de Hidrógeno/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Porcinos , Animales
16.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446274

RESUMEN

Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.


Asunto(s)
Colitis Ulcerosa , Vesículas Extracelulares , Animales , Porcinos , Citocinas/metabolismo , Metaloproteinasa 9 de la Matriz , Receptor Toll-Like 8 , Leche/metabolismo , Lipopolisacáridos , Peróxido de Hidrógeno , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Colitis Ulcerosa/metabolismo , Inflamación/patología , Vesículas Extracelulares/metabolismo , Cabras , Mucosa Intestinal/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982798

RESUMEN

Long non-coding RNAs (lncRNAs) modified by n6-methyladenosine (m6A) have been implicated in the development and progression of several diseases. However, the mechanism responsible for the role of m6A-modified lncRNAs in Clostridium perfringens type C piglet diarrhea has remained largely unknown. We previously developed an in vitro model of CPB2 toxin-induced piglet diarrhea in IPEC-J2 cells. In addition, we previously performed RNA immunoprecipitation sequencing (MeRIP-seq), which demonstrated lncRNA EN_42575 as one of the most regulated m6A-modified lncRNAs in CPB2 toxin-exposed IPEC-J2 cells. In this study, we used MeRIP-qPCR, FISH, EdU, and RNA pull-down assays to determine the function of lncRNA EN_42575 in CPB2 toxin-exposed IPEC-J2 cells. LncRNA EN_42575 was significantly downregulated at different time points in CPB2 toxin-treated cells. Functionally, lncRNA EN_42575 overexpression reduced cytotoxicity, promoted cell proliferation, and inhibited apoptosis and oxidative damage, whereas the knockdown of lncRNA EN_42575 reversed these results. Furthermore, the dual-luciferase analysis revealed that METTL3 regulated lncRNA EN_42575 expression in an m6A-dependent manner. In conclusion, METTL3-mediated lncRNA EN_42575 exerted a regulatory effect on IPEC-J2 cells exposed to CPB2 toxins. These findings offer novel perspectives to further investigate the function of m6A-modified lncRNAs in piglet diarrhea.


Asunto(s)
ARN Largo no Codificante , Toxinas Biológicas , Animales , Porcinos , ARN Largo no Codificante/genética , Apoptosis/genética , Proliferación Celular , Adenosina , Diarrea , Metiltransferasas/genética
18.
Acta Vet Hung ; 71(1): 16-24, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37141048

RESUMEN

Cytochrome P450 (CYP) oxidases are among the main metabolizing enzymes that are responsible for the transformation of xenobiotics, including clinically important drugs. Their activity can be influenced by several compounds leading to decreased efficacy or increased toxicity of co-administered medicines. Flavonoids exert various beneficial effects on human and animal health; therefore they are used as food and feed supplements. However, they are also well-known for their CYP modulating potential. Since the amount of CYP enzymes is highest in the liver, interaction studies are mainly conducted in hepatocytes, however, CYP activity in the gastrointestinal tract is also remarkable. In this study, effects of apigenin (API), quercetin (QUE) and their methylated derivatives trimethylapigenin (TM-API), 3-O-methylquercetin (3M-QUE) and 3',7-di-O-methylquercetin (3'7DM-QUE) on the CYP enzyme activity was examined in IPEC-J2 porcine intestinal epithelial cells. Potential food-drug interactions were studied using flavonoid treatment in combination with inducer and inhibitor compounds. API, TM-API, QUE and 3M-QUE significantly inhibited the CYP3A29 enzyme, while 3'7DM-QUE did not alter its activity. Enzyme inhibition has also been observed in case of some food-drug combinations. Our results support previous findings about CYP modulating effects of flavonoids and highlights the possibility of interactions when flavonoid-containing supplements are consumed during drug treatments.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Flavonoides , Humanos , Animales , Porcinos , Flavonoides/farmacología , Hígado , Hepatocitos
19.
J Cell Physiol ; 237(3): 1768-1779, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791644

RESUMEN

Peptidoglycan (PGN) is a major polymer in bacterial cell walls and may constrain gut functionality and lower intestinal efficiencies in livestock. Citral has been reported to exhibit antibacterial and anti-inflammatory biological activities, improving the gastrointestinal function of swine. However, the protective effect of citral against PGN-elicited cellular responses and possible underlying mechanisms are unknown. In this study, the porcine jejunal epithelial cell line (IPEC-J2) was challenged with PGN from Staphylococcus aureus (S. aureus) or Bacillus subtilis (B. subtilis) to explore PGN-induced inflammatory responses. Our data showed that the inflammatory response stimulated by PGN from harmful bacteria (S. aureus) was more potent than that from commensal bacteria (B. subtilis) in IPEC-J2 cells. Based on the inflammatory model by PGN from S. aureus, it was demonstrated that PGN could significantly induce inflammatory cytokine production and influence nutrient absorption and barrier function in a dose-dependent manner. However, the PGN-mediated immune responses were remarkably suppressed by citral. In addition, citral significantly attenuated the effect of PGN on the intestine nutrient absorption and barrier function. The expression of TLR2 was strongly induced by PGN stimulation, which was suppressed by citral. All data nominated that citral downregulated PGN-induced inflammation via TLR2-mediated activation of the NF-κB signaling pathway in IPEC-J2 cells. Furthermore, the results also indicate that the PGN degradation through the inclusion of enzymes (e.g., muramidase) as well as the inclusion of citral for attenuating inflammation may improve pig gut health and functionality.


Asunto(s)
Peptidoglicano , Receptor Toll-Like 2 , Monoterpenos Acíclicos , Animales , Pared Celular/metabolismo , Células Epiteliales/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Peptidoglicano/farmacología , Staphylococcus aureus/metabolismo , Porcinos , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
20.
J Cell Physiol ; 237(2): 1389-1405, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34661912

RESUMEN

Heat stress (HS) induced by high ambient temperatures compromises intestinal epithelial cell. However, the underlying mechanisms by which HS causes intestinal barrier dysfunction remain unclear. In this study, we established an in vitro acute-HS-induced intestinal damage using porcine small intestinal epithelial cell (IPEC-J2) that exposed to the high temperatures (43°C) for 2 h. The cell proliferation, apoptosis, tight junction (TJ) barrier integrity and transcriptomic profiles were measured. The results showed that HS decreased cell viability while increased proapoptotic signaling evidenced by Bax/bcl2 ratio, cytochrome C release to cytosol and active-caspase 3 increases (p < 0.01). HS led to decreased transepithelial electrical resistance, increased cell permeability, and downregulated TJ proteins including ZO1, occludin, and claudin 3 (p < 0.05). Transcriptome sequencing and KEGG pathway analysis revealed HS-induced cell cycle arrest and activation of endoplasmic reticulum stress (ERS) response mediated by a critical transcript eif2α and proapoptotic molecule DDIT3 (known as CHOP). Furthermore, inhibition of ERS by 4-phenylbutyrate (4-PBA) administration and knockdown of eif2α and CHOP significantly attenuated IPEC-J2 cells apoptosis (p < 0.05). Transmission electron microscopy analysis suggested that 4-PBA inhibited HS-induced increase in ER lumen diameter, indicating ultrastructural sign of ERS. In addition, HS-induced impairment of TJs was significantly attenuated by 4-PBA (p < 0.05). Collectively, HS induces ERS and activates the p-eif2α/CHOP signaling pathway to impair epithelial barrier integrity through triggering the intestinal epithelial cell apoptosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación , Animales , Apoptosis , Respuesta al Choque Térmico , Porcinos , Proteínas de Uniones Estrechas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA