Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.452
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 35: 229-253, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446063

RESUMEN

The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.


Asunto(s)
Alergia e Inmunología , Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Biología Sintética , Linfocitos T/inmunología , Animales , Ingeniería Genética , Humanos , Activación de Linfocitos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/genética , Linfocitos T/trasplante
2.
Cell ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39305903

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the DMD gene. Muscle fibers rely on the coordination of multiple cell types for repair and regenerative capacity. To elucidate the cellular and molecular changes in these cell types under pathologic conditions, we generated a rhesus monkey model for DMD that displays progressive muscle deterioration and impaired motor function, mirroring human conditions. By leveraging these DMD monkeys, we analyzed freshly isolated muscle tissues using single-cell RNA sequencing (scRNA-seq). Our analysis revealed changes in immune cell landscape, a reversion of lineage progressing directions in fibrotic fibro-adipogenic progenitors (FAPs), and TGF-ß resistance in FAPs and muscle stem cells (MuSCs). Furthermore, MuSCs displayed cell-intrinsic defects, leading to differentiation deficiencies. Our study provides important insights into the pathogenesis of DMD, offering a valuable model and dataset for further exploration of the underlying mechanisms, and serves as a suitable platform for developing and evaluating therapeutic interventions.

3.
Cell ; 184(6): 1469-1485, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33711259

RESUMEN

In many asthmatics, chronic airway inflammation is driven by IL-4-, IL-5-, and IL-13-producing Th2 cells or ILC2s. Type 2 cytokines promote hallmark features of the disease such as eosinophilia, mucus hypersecretion, bronchial hyperresponsiveness (BHR), IgE production, and susceptibility to exacerbations. However, only half the asthmatics have this "type 2-high" signature, and "type 2-low" asthma is more associated with obesity, presence of neutrophils, and unresponsiveness to corticosteroids, the mainstay asthma therapy. Here, we review the underlying immunological basis of various asthma endotypes by discussing results obtained from animal studies as well as results generated in clinical studies targeting specific immune pathways.


Asunto(s)
Asma/inmunología , Inmunidad Adaptativa , Células Epiteliales Alveolares/patología , Animales , Asma/fisiopatología , Asma/terapia , Asma/virología , Linfocitos B/inmunología , Terapia Biológica , Humanos , Inmunoglobulina E/inmunología
4.
Immunity ; 57(8): 1975-1993.e10, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39047731

RESUMEN

Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.


Asunto(s)
Cromatina , Elementos Transponibles de ADN , Análisis de la Célula Individual , Linfocitos T Reguladores , Animales , Cromatina/metabolismo , Cromatina/genética , Linfocitos T Reguladores/inmunología , Elementos Transponibles de ADN/genética , Ratones , Especificidad de Órganos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones Endogámicos C57BL , Humanos
5.
Immunity ; 57(10): 2328-2343.e8, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39217987

RESUMEN

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.


Asunto(s)
Encéfalo , Vasos Linfáticos , Meninges , Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Ratones , Meninges/inmunología , Encéfalo/metabolismo , Encéfalo/inmunología , Humanos , Vaina de Mielina/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Supervivencia Celular , Remielinización , Femenino , Masculino , Inmunidad Adaptativa
6.
Cell ; 175(6): 1701-1715.e16, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30449622

RESUMEN

While many genetic variants have been associated with risk for human diseases, how these variants affect gene expression in various cell types remains largely unknown. To address this gap, the DICE (database of immune cell expression, expression quantitative trait loci [eQTLs], and epigenomics) project was established. Considering all human immune cell types and conditions studied, we identified cis-eQTLs for a total of 12,254 unique genes, which represent 61% of all protein-coding genes expressed in these cell types. Strikingly, a large fraction (41%) of these genes showed a strong cis-association with genotype only in a single cell type. We also found that biological sex is associated with major differences in immune cell gene expression in a highly cell-specific manner. These datasets will help reveal the effects of disease risk-associated genetic polymorphisms on specific immune cell types, providing mechanistic insights into how they might influence pathogenesis (https://dice-database.org).


Asunto(s)
Regulación de la Expresión Génica/inmunología , Genotipo , Polimorfismo de Nucleótido Simple/inmunología , Sitios de Carácter Cuantitativo/inmunología , Caracteres Sexuales , Adolescente , Adulto , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
7.
Cell ; 174(5): 1293-1308.e36, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-29961579

RESUMEN

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We profiled 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph nodes, using single-cell RNA-seq. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous phenotypic expansions specific to the tumor microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer. Our results have important implications for characterizing tumor-infiltrating immune cells.


Asunto(s)
Neoplasias de la Mama/inmunología , Regulación Neoplásica de la Expresión Génica , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral/inmunología , Teorema de Bayes , Neoplasias de la Mama/patología , Análisis por Conglomerados , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Humanos , Sistema Inmunológico , Inmunoterapia/métodos , Ganglios Linfáticos , Linfocitos Infiltrantes de Tumor , Macrófagos/metabolismo , Fenotipo , Transcriptoma
8.
Annu Rev Cell Dev Biol ; 34: 523-544, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30089221

RESUMEN

An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain-from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring-as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/crecimiento & desarrollo , Microglía/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Microglía/patología , Enfermedades Neurodegenerativas , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Transducción de Señal/genética
9.
Immunity ; 54(2): 211-224, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567261

RESUMEN

Astrocytes play both physiological and pathological roles in maintaining central nervous system (CNS) function. Here, we review the varied functions of astrocytes and how these might change in subsets of reactive astrocytes. We review the current understanding of astrocyte interactions with microglia and the vasculature and protective barriers in the central nervous system as well as highlight recent insights into physiologic and reactive astrocyte sub-states identified by transcriptional profiling. Our goal is to stimulate inquiry into how these molecular identifiers link to specific functional changes in astrocytes and to define the implications of these heterogeneous molecular and functional changes in brain function and pathology. Defining these complex interactions has the potential to yield new therapies in CNS injury, infection, and disease.


Asunto(s)
Astrocitos/inmunología , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/inmunología , Infecciones/inmunología , Inflamación/inmunología , Animales , Comunicación Celular , Humanos , Inmunidad Celular , Neuroinmunomodulación
10.
Physiol Rev ; 101(1): 259-301, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584191

RESUMEN

Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Neuralgia/fisiopatología , Neuralgia/terapia , Animales , Humanos , Fibras Nerviosas , Nervios Periféricos/fisiopatología , Sistema Nervioso Periférico/fisiopatología
11.
Physiol Rev ; 101(4): 1691-1744, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949875

RESUMEN

This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.


Asunto(s)
Adenosina Trifosfato/fisiología , Calcio/fisiología , Páncreas Exocrino/fisiología , Enfermedades Pancreáticas/fisiopatología , Animales , Señalización del Calcio , Humanos , Páncreas Exocrino/fisiopatología
12.
Semin Immunol ; 71: 101865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232665

RESUMEN

Intestinal homeostasis is achieved by the balance among intestinal epithelium, immune cells, and gut microbiota. Gasdermins (GSDMs), a family of membrane pore forming proteins, can trigger rapid inflammatory cell death in the gut, mainly pyroptosis and NETosis. Importantly, there is increasing literature on the non-cell lytic roles of GSDMs in intestinal homeostasis and disease. While GSDMA is low and PJVK is not expressed in the gut, high GSDMB and GSDMC expression is found almost restrictively in intestinal epithelial cells. Conversely, GSDMD and GSDME show more ubiquitous expression among various cell types in the gut. The N-terminal region of GSDMs can be liberated for pore formation by an array of proteases in response to pathogen- and danger-associated signals, but it is not fully understood what cell type-specific mechanisms activate intestinal GSDMs. The host relies on GSDMs for pathogen defense, tissue tolerance, and cancerous cell death; however, pro-inflammatory milieu caused by pyroptosis and excessive cytokine release may favor the development and progression of inflammatory bowel disease and cancer. Therefore, a thorough understanding of spatiotemporal mechanisms that control gasdermin expression, activation, and function is essential for the development of future therapeutics for intestinal disorders.


Asunto(s)
Gasderminas , Neoplasias , Humanos , Piroptosis/fisiología , Proteínas de Neoplasias/metabolismo , Citocinas/metabolismo , Neoplasias/metabolismo , Inflamasomas , Biomarcadores de Tumor
13.
Development ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39470160

RESUMEN

Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal but fertility declines with age. While morphological studies have informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying the maintenance and decline of spermatogenesis are not yet understood. We used single-cell RNA sequencing to generate a developmental atlas of the aging zebrafish testis. All testes contained spermatogonia, but we observed a progressive decline in spermatogenesis that correlates with age. Testes from some older males only contained spermatogonia and a reduced population of spermatocytes. Spermatogonia in older males are transcriptionally distinct from spermatogonia in testes capable of robust spermatogenesis. Immune cells including macrophages and lymphocytes drastically increase in abundance in testes that cannot complete spermatogenesis. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of spermatogenesis.

14.
Semin Immunol ; 66: 101724, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758379

RESUMEN

Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.


Asunto(s)
Sistema Inmunológico , Inmunidad Innata , Inmunoterapia , Microbiota , Neoplasias , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Inmunidad Innata/inmunología , Microbiota/inmunología , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Microambiente Tumoral , Homeostasis , Animales
15.
Annu Rev Pharmacol Toxicol ; 63: 565-583, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662582

RESUMEN

The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.


Asunto(s)
Dolor Crónico , Neuralgia , Femenino , Humanos , Masculino , Dolor Crónico/tratamiento farmacológico , Caracteres Sexuales , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuronas
16.
Proc Natl Acad Sci U S A ; 120(44): e2308511120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871201

RESUMEN

The immune system is a complex network of cells with critical functions in health and disease. However, a comprehensive census of the cells comprising the immune system is lacking. Here, we estimated the abundance of the primary immune cell types throughout all tissues in the human body. We conducted a literature survey and integrated data from multiplexed imaging and methylome-based deconvolution. We also considered cellular mass to determine the distribution of immune cells in terms of both number and total mass. Our results indicate that the immune system of a reference 73 kg man consists of 1.8 × 1012 cells (95% CI 1.5-2.3 × 1012), weighing 1.2 kg (95% CI 0.8-1.9). Lymphocytes constitute 40% of the total number of immune cells and 15% of the mass and are mainly located in the lymph nodes and spleen. Neutrophils account for similar proportions of both the number and total mass of immune cells, with most neutrophils residing in the bone marrow. Macrophages, present in most tissues, account for 10% of immune cells but contribute nearly 50% of the total cellular mass due to their large size. The quantification of immune cells within the human body presented here can serve to understand the immune function better and facilitate quantitative modeling of this vital system.


Asunto(s)
Cuerpo Humano , Linfocitos , Masculino , Humanos , Ganglios Linfáticos , Bazo , Macrófagos
17.
Genes Dev ; 32(19-20): 1267-1284, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275043

RESUMEN

The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.


Asunto(s)
Metástasis de la Neoplasia/inmunología , Neoplasias/inmunología , Linfocitos B/inmunología , Carcinoma/inmunología , Carcinoma/secundario , Células Dendríticas/inmunología , Progresión de la Enfermedad , Humanos , Vigilancia Inmunológica , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Linfocitos T/inmunología
18.
Immunol Rev ; 312(1): 76-102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35808839

RESUMEN

Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Neoplasias , Comunicación Celular , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
19.
Semin Cell Dev Biol ; 150-151: 50-57, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635104

RESUMEN

The intestine comprises the largest proportion of immune cells in the body. It is continuously exposed to new antigens and immune stimuli from the diet, microbiota but also from intestinal pathogens. In this review, we describe the main populations of immune cells present along the intestine, both from the innate and adaptive immune system. We later discuss how intestinal niches significantly impact the phenotype and function of gut immune populations at steady state and upon infection.


Asunto(s)
Inmunidad Mucosa , Mucosa Intestinal , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Inmunidad Innata , Inmunidad Adaptativa
20.
J Biol Chem ; 300(2): 105614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159863

RESUMEN

The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.


Asunto(s)
Inmunoterapia , Receptores Proteinasa-Activados , Péptido Hidrolasas/metabolismo , Receptores Acoplados a Proteínas G , Receptores Proteinasa-Activados/agonistas , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Neoplasias/inmunología , Neoplasias/terapia , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/terapia , Humanos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA