Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 17(12): 4522-4532, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33164519

RESUMEN

The initial drug release from in situ forming implants is affected by factors such as the physicochemical properties of the active pharmaceutical ingredient, the type of the excipients utilized, and the surrounding environment. The feasibility of UV-vis imaging for characterization of the initial behavior of poly(d,l-lactide-co-glycolide) (PLGA)/1-methyl-2-pyrrolidinone (NMP) in situ forming implants was investigated. The in vitro release of leuprolide acetate (LA) and implant formation in real time were monitored using dual-wavelength imaging at 280 and 525 nm, respectively, in matrices based on agarose gel and hyaluronic acid (HA) solution emulating the subcutaneous matrix. Three hours upon injection of the pre-formulation, approximately 15% of the total amount of LA administered was found in the agarose gel, while 5% was released from the implant into the HA solution. Concurrently, more extensive swelling of the implants in the HA solution as compared to implants in the agarose gel was observed. Transport of both LA and the solvent NMP was investigated using UV-vis imaging in a small-scale cell where the geometry of the formulation was controlled, showing a linear correlation between drug release and solvent escape. Light microscopy showed that the microstructures of the resulting implants in agarose gel and HA solution were different, which may be attributed to the different solvent exchange rates. UV imaging was also used to examine the interaction of LA with the release medium by characterizing the diffusion of LA in agarose gel, HA solution, and phosphate buffered saline. The reduced LA diffusivity in HA solution as compared to agarose gel and the LA distribution coefficient in the agarose gel-HA system indicated the presence of interactions between LA and HA. Our findings show that the external environment affects the solvent exchange kinetics for in situ forming implants in vitro, resulting in different types of initial release behavior. UV-vis imaging in combination with biorelevant matrices may offer an interesting approach in the development of in situ forming implant delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Implantes de Medicamentos/farmacocinética , Excipientes/química , Leuprolida/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Implantes de Medicamentos/administración & dosificación , Implantes de Medicamentos/química , Liberación de Fármacos , Leuprolida/administración & dosificación , Leuprolida/química , Microscopía Ultravioleta , Imagen Molecular/métodos , Solubilidad
2.
J Microencapsul ; 33(4): 355-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27530523

RESUMEN

Drug release mechanism of in situ-forming implants (ISIs) based on poly(lactic acid-co-glycolic acid) (PLGA) loaded with leuprolide acetate/ß-cyclodextrin (LA/ß-CD) complexes via fitting with four diffusion-based semi-empirical models were studied. The release rate constants and release exponent of ISIs were calculated. The main drug release mechanism was Fickian diffusion. The LA diffusion coefficient and release constant were decreased via increasing the portion of ß-CD in complexes. The release curve was parabolic, with a higher initial slope and then consistent with the exponential. All ISIs containing LA/ß-CD complexes better fitted with the Korsmeyer-Peppas, Weibull and Peppas-Sahlin models rather than first-order model. Furthermore, the effect of LA/ß-CD complexation on the degradation of ISIs was studied through scanning electron microscopy (SEM). Results showed that hydrophilic nature of ß-CD facilitated the surface erosion of PLGA chains, however after 18 d, ISI-1/10 had still a proper structural strength, due to no hydrolytic degradation of ß-CD in this implant.


Asunto(s)
Implantes de Medicamentos , Ácido Láctico , Leuprolida , Modelos Químicos , Ácido Poliglicólico , beta-Ciclodextrinas , Implantes de Medicamentos/química , Implantes de Medicamentos/farmacocinética , Implantes de Medicamentos/farmacología , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacología , Leuprolida/química , Leuprolida/farmacocinética , Leuprolida/farmacología , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética , beta-Ciclodextrinas/farmacología
3.
Int J Pharm ; 657: 124121, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621617

RESUMEN

In-situ forming poly(lactic-co-glycolic acid) (PLGA) implants offer a great potential for controlled drug delivery for a variety of applications, e.g. periodontitis treatment. The polymer is dissolved in a water-miscible solvent. The drug is dissolved or dispersed in this solution. Upon contact with aqueous body fluids, the solvent diffuses into the surrounding tissue and water penetrates into the formulation. Consequently, PLGA precipitates, trapping the drug. Often, N-methyl-2-pyrrolidine (NMP) is used as a water-miscible solvent. However, parenteral administration of NMP raises toxicity concerns. The aim of this study was to identify less toxic alternative solvent systems for in-situ forming PLGA implants. Various blends of polyethylene glycol 400 (PEG 400), triethyl citrate (TEC) and ethanol were used to prepare liquid formulations containing PLGA, ibuprofen (as an anti-inflammatory drug) and/or chlorhexidine dihydrochloride (as an antiseptic agent). Implant formation and drug release kinetics were monitored upon exposure to phosphate buffer pH 6.8 at 37 °C. Furthermore, the syringeability of the liquids, antimicrobial activity of the implants, and dynamic changes in the latter's wet mass and pH of the release medium were studied. Importantly, 85:10:5 and 60:30:10 PEG 400:TEC:ethanol blends provided good syringeability and allowed for rapid implant formation. The latter controlled ibuprofen and chlorhexidine release over several weeks and assured efficient antimicrobial activity. Interestingly, fundamental differences were observed concerning the underlying release mechanisms of the two drugs: Ibuprofen was dissolved in the solvent mixtures and partially leached out together with the solvents during implant formation, resulting in relatively pronounced burst effects. In contrast, chlorhexidine dihydrochloride was dispersed in the liquids in the form of tiny particles, which were effectively trapped by precipitating PLGA during implant formation, leading to initial lag-phases for drug release.


Asunto(s)
Clorhexidina , Implantes de Medicamentos , Liberación de Fármacos , Ibuprofeno , Polietilenglicoles , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solventes , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Solventes/química , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Polietilenglicoles/química , Implantes de Medicamentos/química , Ácido Poliglicólico/química , Clorhexidina/química , Clorhexidina/administración & dosificación , Ácido Láctico/química , Citratos/química , Etanol/química
4.
Int J Pharm ; 652: 123842, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266943

RESUMEN

Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1ß and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.


Asunto(s)
Taninos Hidrolizables , Osteoartritis , Espectrometría de Masas en Tándem , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cromatografía Liquida , Osteoartritis/tratamiento farmacológico , Implantes de Medicamentos
5.
Int J Pharm ; 654: 123973, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458402

RESUMEN

Delivering medication to the posterior segment of the eye presents a significant challenge. Intravitreal injection has emerged as the preferred method for drug delivery to this area. However, current injectable non-biodegradable implants for fluocinolone acetonide (FA) require surgical removal after prolonged drug release, potentially affecting patient compliance. This study aimed to develop an in-situ forming biodegradable implant (ISFBI) optimal formulation containing PLGA504H and PLGA756S (50:50 w/w%) with the additive NMP solvent. The goal was to achieve slow and controlled release of FA over a two-month period with lower burst release, following a single intravitreal injection. Through morphology, rheology, stability and in-vitro release evaluations, the optimal formulation demonstrated low viscosity (0.12-1.25 Pa. s) and sustained release of FA at a rate of 0.36 µg/day from the third day up to two months. Furthermore, histopathology and in-vivo studies were conducted after intravitreal injection of the optimal formulation in rabbits' eye. Pharmacokinetic analysis demonstrated mean residence time (MRT) of 20.02 ± 0.6 days, half-life (t1/2) of 18.80 ± 0.4 days, and clearance (Cl) of 0.29 ± 0.03 ml/h for FA in the vitreous humor, indicating sustained and slow absorption of FA by the targeted retinal tissue from vitrea over the two-month period and eliminating through the anterior section of the eye, as revealed by its presence in the aqueous humor. Additionally, FA exhibited no detection in the blood and no evidence of systemic side effects or damage on the retinal layer and other organs. Based on these findings, it can be concluded that in-situ forming injectable biodegradable PLGA implants can show promise as a long-acting and controlled-release system for intraocular drug delivery.


Asunto(s)
Fluocinolona Acetonida , Glucocorticoides , Animales , Conejos , Humanos , Fluocinolona Acetonida/farmacocinética , Implantes Absorbibles , Implantes de Medicamentos , Sistemas de Liberación de Medicamentos/métodos
6.
Drug Deliv Transl Res ; 14(8): 2146-2157, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822092

RESUMEN

While long-acting injectable treatments are gaining increasing interest in managing chronic diseases, the available drug delivery systems almost exclusively rely on hydrophobic matrixes, limiting their application to either hydrophobic drugs or large and hydrophilic molecules such as peptides. To address the technological lock for long-acting delivery systems tailored to small, hydrophilic drugs such as anticancer and antiviral nucleoside/nucleotide analogues, we have synthesized and characterized an original approach with a multi-scale structure: (i) a nucleotide (adenosine triphosphate, ATP) is first incorporated in hydrophilic chitosan-Fe(III) nanogels; (ii) these nanogels are then transferred by freeze-drying and resuspension into a water-free, hydrophobic medium containing PLGA and an organic solvent, N-methyl-2-pyrrolidone. We show that this specific association allows an injectable and homogeneous dispersion, able to form in situ implants upon injection in physiological or aqueous environments. This system releases ATP in vitro without any burst effect in a two-step mechanism, first as nanogels acting as an intermediate reservoir over a week, then as free drug over several weeks. In vivo studies confirmed the potential of such nanostructured implants for sustained drug release following subcutaneous injection to mice hock, opening perspectives for sustained and targeted delivery through the lymphatic system.


Asunto(s)
Adenosina Trifosfato , Quitosano , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras , Animales , Adenosina Trifosfato/administración & dosificación , Quitosano/química , Quitosano/administración & dosificación , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Liberación de Fármacos , Ratones , Preparaciones de Acción Retardada/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos , Implantes de Medicamentos , Inyecciones Subcutáneas , Nanogeles/química , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación , Pirrolidinonas
7.
J Control Release ; 372: 648-660, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936743

RESUMEN

In vitro-In vivo correlation (IVIVC) is a main focus of the pharmaceutical industry, academia and the regulatory sectors, as this is an effective modelling tool to predict drug product in vivo performance based on in vitro release data and serve as a surrogate for bioequivalence studies, significantly reducing the need for clinical studies. Till now, IVIVCs have not been successfully developed for in situ forming implants due to the significantly different in vitro and in vivo drug release profiles that are typically achieved for these dosage forms. This is not unexpected considering the unique complexity of the drug release mechanisms of these products. Using risperidone in situ forming implants as a model, the current work focuses on: 1) identification of critical attributes of in vitro release testing methods that may contribute to differences in in vitro and in vivo drug release from in situ forming implants; and 2) optimization of the in vitro release method, with the aim of developing Level A IVIVCs for risperidone implants. Dissolution methods based on a novel Teflon shape controlling adapter along with a water non-dissolvable glass fiber membrane (GF/F) instead of a water dissolvable PVA film (named as GF/F-Teflon adapter and PVA-Teflon adapter, respectively), and an in-house fabricated Glass slide adapter were used to investigate the impact of: the surface-to-volume ratio, water uptake ratio, phase separation rate (measured by NMP release in 24 h post injection in vitro or in vivo), and mechanical pressure on the drug release patterns. The surface-to-volume ratio and water uptake were shown to be more critical in vitro release testing method attributes compared to the phase separation rate and mechanical pressure. The Glass slide adapter-based dissolution method, which allowed for the formation of depots with bio-mimicking surface-to-volume ratios and sufficient water uptake, has the ability to generate bio-relevant degradation profiles as well as in vitro release profiles for risperidone implants. For the first time, a Level A IVIVC (rabbit model) has been successfully developed for in situ forming implants. Release data for implant formulations with slightly different PLGA molecular weights (MWs) were used to develop the IVIVC. The predictability of the model passed external validation using the reference listed drug (RLD), Perseris®. IVIVC could not be developed when formulations with different PLGA molar ratios of lactic acid to glycolic acid (L/G) were included. The present work provides a comprehensive understanding of the impact of the testing method attributes on drug release from in situ forming implants, which is a valuable practice for level A IVIVC development.


Asunto(s)
Implantes de Medicamentos , Liberación de Fármacos , Risperidona , Risperidona/administración & dosificación , Risperidona/farmacocinética , Risperidona/química , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacocinética , Antipsicóticos/química , Animales , Solubilidad
8.
Adv Mater ; 35(51): e2301698, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37243452

RESUMEN

Implantable, bioresorbable drug delivery systems offer an alternative to current drug administration techniques; allowing for patient-tailored drug dosage, while also increasing patient compliance. Mechanistic mathematical modeling allows for the acceleration of the design of the release systems, and for prediction of physical anomalies that are not intuitive and may otherwise elude discovery. This study investigates short-term drug release as a function of water-mediated polymer phase inversion into a solid depot within hours to days, as well as long-term hydrolysis-mediated degradation and erosion of the implant over the next few weeks. Finite difference methods are used to model spatial and temporal changes in polymer phase inversion, solidification, and hydrolysis. Modeling reveals the impact of non-uniform drug distribution, production and transport of H+ ions, and localized polymer degradation on the diffusion of water, drug, and hydrolyzed polymer byproducts. Compared to experimental data, the computational model accurately predicts the drug release during the solidification of implants over days and drug release profiles over weeks from microspheres and implants. This work offers new insight into the impact of various parameters on drug release profiles, and is a new tool to accelerate the design process for release systems to meet a patient specific clinical need.


Asunto(s)
Implantes Absorbibles , Sistemas de Liberación de Medicamentos , Humanos , Liberación de Fármacos , Polímeros , Agua , Simulación por Computador , Microesferas
9.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678883

RESUMEN

PLGA-based in situ forming implants (ISFI) often require a high amount of potentially toxic solvents such as N methyl-Pyrrolidone (NMP). The aim of the present study was to develop lipid in-situ-forming oleogels (ISFOs) as alternative delivery systems. 12-Hydroxystearic acid (12-HSA) was selected as the oleogelling agent and three different oleoformulations were investigated: (a) 12-HSA, peanut oil (PO), NMP; (b) 12-HSA, medium-chain triglycerides (MCT), ethanol; (c) 12-HSA, isopropyl myristate (IPM), ethanol. The effects of the 12-HSA concentration, preparation method, and composition on the mechanical stability were examined using a texture analysis and oscillating rheology. The texture analysis was used to obtain information on the compression strength. The amplitude sweeps were analyzed to provide information on the gel strength and the risk of brittle fractures. The frequency sweeps allowed insights into the long-term stability and risk of syneresis. The syringeability of the ISFOs was tested, along with their acute and long-term cytotoxicity in vitro. The developed ISFOs have the following advantages: (1) the avoidance of highly acidic degradation products; (2) low amounts of organic solvents required; (3) low toxicity; (4) low injection forces, even with small needle sizes. Therefore, ISFOs are promising alternatives to the existing polymer/NMP-based ISFIs.

10.
J Control Release ; 353: 943-955, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535542

RESUMEN

Although recruiting T cells to convert cold tumors into hot can prevent some tumors from evading immune surveillance, tumors have evolved more mechanisms to achieve immune evasion, such as downregulating major histocompatibility complex I (MHC I) molecules expression to prevent T cells from recognizing tumor-antigens, or secreting immune suppression cytokines that disable T cells. Tumor immune evasion not only promotes tumor growth, but also weakens the efficacy of existing tumor immunotherapies. Therefore, recruiting T cells while reshaping innate immunity plays an important role in preventing tumor immune escape. In this study, we constructed a long-acting in situ forming implant (ISFI) based on the Atrigel technology, co-encapsulated with G3-C12 and sulfisoxazole (SFX) as a drug depot in the tumor site (SFX + G3-C12-ISFI). First, G3-C12 could recruit T cells, and transform cold into hot tumors. Furthermore, SFX could inhibit tumor-derived exosomes secretion, reduce the shedding of NKG2D ligand (NKG2DL), repair NKG2D/NKG2DL pathway, reinvigorate natural killer (NK) cells, and evade the effects of MHC I molecules missing. In the humanized cold tumor model, our strategy showed an excellent anti-tumor effect, providing a smart strategy for solving tumor evasion immune surveillance.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales , Neoplasias/metabolismo , Inmunidad Innata
11.
J Control Release ; 361: 777-791, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591464

RESUMEN

Despite the unique advantages of injectable, long-acting in situ forming implant formulations based on poly(lactide-co-glycolide) (PLGA) and N-Methyl-2-Pyrrolidone (NMP), only six products are commercially available. A better understanding of PLGA will aid in the development of more in situ forming implant innovator and generic products. This article investigates the impact of slight changes in PLGA attributes, i.e., molecular weight (MW), lactide:glycolide (L/G) ratio, blockiness, and end group, on the in vitro and in vivo performance of PLGA-based in situ forming implant formulations. Perseris (risperidone) for extended-release injectable suspension was selected as the reference listed drug (RLD). A previously developed adapter-based USP 2 method was used for the in vitro release testing of various risperidone implant formulations. A rabbit model was used to determine the in vivo pharmacokinetic profiles of the formulations (subcutaneous administration) and deconvolution (Loo-Riegelman method) was conducted to obtain the in vivo release profiles. The results showed that a 5 KDa difference in the MW (19.2, 24.2, 29.2 KDa), a 5% variation in the L/G ratio (85/15, 80/20, 75/25) and the end-cap (acid vs ester) all significantly impacted the formulation behavior both in vitro and in vivo. Higher MW, higher L/G ratio and ester end-cap PLGA all resulted in longer release durations. The formulations prepared with polymers with different blockiness values (within the blockiness range tested) did not show differences in in vitro and in vivo release. An in vitro-in vivo correlation (IVIVC) was not developed due to the different in vitro and in vivo phase separation rates, swelling tendencies and consequent significantly different release profiles. This is the first report evaluating the impact of PLGA property variation (over a narrow range) on the performance of in situ forming implants. The knowledge gained will provide a better understanding of the mechanisms underlying risperidone in situ forming implant performance and will aid the development of future products.


Asunto(s)
Ésteres , Risperidona , Animales , Conejos , Peso Molecular , Oligonucleótidos , Polímeros
12.
Int J Pharm ; 627: 122206, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126824

RESUMEN

Recently, biomedical applications of organogels have been increasing; however, there is a demand for bio-based polymers. Here, we report self-assembled zein organogels in N-methyl pyrrolidone (NMP), Dimethyl sulfoxide (DMSO), and glycerol formal (GF). The gel formation was driven by the solvent's polarity and the hydrogen bonding component of Hansen Solubility Parameters was important in promoting gelation. Gels exhibited shear-thinning and thixotropic properties. Furthermore, water-induced self-assembly of zein allows mechanically robust in situ implant formation by solvent exchange. Ciprofloxacin was incorporated as a model drug and sustained release depending upon the solvent exchange rate was observed. In situ implants in agarose gel retained antibacterial efficacy against S. aureus for more than 14 days. Zein-based organogels were further applied as 3D printing ink and it was found that zein gel in DMSO had superior printability than gels prepared in NMP and GF. Using three solvents to prepare organogels can enable the encapsulation of various drugs and facilitate the preparation of composite gels with other biocompatible polymers. These organogel systems can further be used for developing 3D printed drug delivery systems or scaffolds for tissue engineering.


Asunto(s)
Zeína , Dimetilsulfóxido , Tinta , Preparaciones de Acción Retardada , Staphylococcus aureus , Sefarosa , Excipientes , Geles , Solventes , Polímeros , Agua , Impresión Tridimensional , Antibacterianos , Ciprofloxacina
13.
Curr Drug Deliv ; 19(1): 157-166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34139983

RESUMEN

INTRODUCTION: Typically, in situ forming implants utilize Poly (lactide- co- glycolide) (PLGA) as carrier and N-methyl-2-pyrrolidone (NMP) as solvent. However, it is essential to develop different carriers to release various drugs in a controlled and sustained manner with economic and safety considerations. OBJECTIVE: The present study aims to evaluate the in-vitro release of Bupivacaine HCl from in situ forming systems as post-operative local anesthesia. METHODS: We used Sucrose acetate isobutyrate (SAIB), PLGA 50:50, and a mixture of them as carriers to compare the release behavior. Besides, the effect of PLGA molecular weight (RG 502H, RG 503H, and RG 504H), solvent type, and solvent concentration on the drug release profile has been evaluated. The formulations were characterized by investigating their in-vitro drug release, rheological properties, solubility, and DSC, in addition to their morphological properties. Furthermore, the Korsmeyer-Peppas and Weibull models were applied to the experimental data. Results revealed that using a mixture of SAIB and PLGA compared to using them solely can extend the Bupivacaine HCl release from 3 days to two weeks. RESULTS: The DSC results demonstrated the compatibility of the mixture by showing a single Tg. The formulation with NMP exhibited a higher burst release and final release in comparison with other solvents by 30% and 96%, respectively. Increasing the solvent concentration from 12% to 32% raised the drug release significantly, which confirmed the larger porosity in the morphology results. From the Korsmeyer-Peppas model, the mechanism of drug release has been predicted to be non-Fickian diffusion.


Asunto(s)
Bupivacaína , Excipientes , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Solventes
14.
Saudi Pharm J ; 19(4): 255-62, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23960766

RESUMEN

To control the minimum effective dose, and reduce the number and quantity of administered potent drugs are unique features of advanced drug delivery in situ forming gel formulation. The efficacy, consistency, and increasing the application of existing injection therapies can be enhanced through optimization of controlled released systems by using FDA approved biodegradable PLGA (poly-d,l-lactide-co-glycolide) polymer. The purpose of this study was to develop different in situ forming implant (ISFI) formulations of buprenorphine hydrochloride for post treatment of drug addicts, acute and chronic pains. The drug releases from different ISFIs membranes with and without Tween 80 were compared over a period of time. Kinetic equation followed the Korsmeyer-Peppas model, as the plots showed high linearity. The influence of this additive on polymer properties was investigated using differential scanning calorimetry (DSC), and the membranes structure was studied by X-ray diffractometry (XRD) and scanning electron microscope (SEM). Data revealed that Tween 80 modified the drug release pattern using diffusion mechanism and decreased the glass transition temperature (T g) significantly. The degree of crystallinity was decreased after phase inversion which helps the dissolution of drug from membrane. The porosity of modified membranes was in accordance with release profiles. These findings suggest four different in situ forming implant formulations which can release various dose of the buprenorphine hydrochloride in a prolonged time. Also this surfactant can be an attractive additive for modifying the release rate of drugs from PLGA-based membrane drug delivery systems.

15.
Int J Pharm ; 592: 120105, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232755

RESUMEN

In situ forming implants are attractive long-acting implant dosage forms due to their: i) ability to control drug release; ii) simple manufacturing process; and iii) minimally invasive administration. In situ forming implants are typically made of a drug, solvent, and a biocompatible polymer that controls drug release. Once injected in the subcutaneous tissue, they form solid depots through solvent/non-solvent exchange and phase separation of the biodegradable polymer (such as poly (lactic-co-glycolic acid), PLGA and poly (lactic acid), PLA). However, the mechanism of implant formation and the changes in their microstructure that determine drug release behavior are not fully understood. Furthermore, there is no standardized in vitro release testing method for in situ forming implants due to limitations in recreating bio-relevant and reproducible implant formation in vitro with controllable implant shape, dimensions and surface-to-volume ratio. In the present study, bio-relevant implant formation was recreated in vitro by testing five different methods to determine their effect on drug release kinetics, reproducibility, and internal microstructure formation. The leuprolide acetate formulation Eligard® was used as a model in situ-forming implant, consisting of lyophilized leuprolide acetate, and PLGA dissolved in N-methyl pyrrolidone. The results revealed that the in vitro implant formation method is a crucial step in the dissolution testing process that significantly impacts the release profile of in situ forming implants. An implant formation method that utilizes dissolvable polyvinyl alcohol (PVA) films allowed for initial drug burst release control by modulating implant dimensions (i.e. surface area) and resulted in reproducible in vitro release profiles. In addition, implant formation was shown to affect the internal microstructure of in situ forming implant and was the main factor controlling the release profile which consisted of an initial release phase followed by a release plateau (lag phase) and then a second erosion-controlled release phase.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Implantes de Medicamentos , Liberación de Fármacos , Cinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Reproducibilidad de los Resultados
16.
Int J Nanomedicine ; 16: 2819-2831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33888982

RESUMEN

PURPOSE: To investigate the effects of solvents on the formation of self-assembled nanonization of albumin-oleic acid conjugates (AOCs) using a solvent exchange mechanism for the construction of in situ forming implants (ISFI). METHODS: A poorly water-soluble drug, paliperidone palmitate (PPP), was chosen as the model drug. AOC was synthesized with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction. Dichloromethane, tetrahydrofuran, ethanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and deionized water were selected to investigate the formation of self-assembled AOC nanoparticles (AONs). The volume ratios of organic solvents against water could determine the miscibility, injectability, and in situ nanonizing capability without aggregation. RESULTS: As the polarity of the organic solvents increased, the AONs exhibited a spherical shape, and the larger the volume of the solvent, the smaller the size of the AONs. To use AOC in ISFI for controlled release of PPP, poly(d,l-lactide-co-glycolide) (PLGA) was combined with the AOC in 2 mL of N-methyl-2-pyrrolidone and water solution (1.8/0.2 ratio). The release rates of all formulations exhibited similar curve patterns overall but were more controlled in decreasing order as follows: AOC, PLGA, and AOC/PLGA for 14 days. CONCLUSION: A combined formulation of AOC and PLGA was found to effectively control the initial burst release of the drug.


Asunto(s)
Nanopartículas/química , Palmitato de Paliperidona/farmacocinética , Solventes/química , Albúminas/química , Preparaciones de Acción Retardada , Dimetilsulfóxido/química , Implantes de Medicamentos/farmacocinética , Etanol/química , Ácido Oléico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Pirrolidinonas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua
17.
J Biomater Sci Polym Ed ; 32(8): 994-1008, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33583329

RESUMEN

In this study, a novel PLGA in situ forming implants (ISFIs) were fabricated and methods for testing the in vitro release profiles were also developed. The correlations between in vitro release profiles and in vivo performances (in vitro-in vivo correlation, IVIVC) were also studied. PLGA with different molecular weights were selected as the polymeric matrix. Biocompatible N-methy1-2-pyrrolidone (NMP) or glyceryl triacetate (GTA) were used as the solvents with the ratios of NMP/GTA from 60/40 (vol/vol) to 20/80 (vol/vol). Eprinomectin (EPR) was chosen as the model therapeutic. In vitro release profiles of the EPR-loaded PLGA ISFIs were investigated using various methods (i.e. 'tubule' sample-and-separate and dialysis method). Sprague-Dawley rats were used to study the in vivo pharmacokinetics of EPR-loaded PLGA ISFIs. The release data obtained via 'tubule' sample-separate method had a good IVIVC (Level A, R2 > 0.99). These results showed that the 'tubule' sample-separate method was capable of discriminating the EPR-loaded ISFIs which were equivalent in formulation composition with manufacturing differences. Meanwhile, this method could be used to predict the in vivo performances of ISFIs in the investigated animal model.


Asunto(s)
Ratas Sprague-Dawley , Animales , Implantes de Medicamentos , Peso Molecular , Ratas , Solventes
18.
Int J Pharm ; 580: 119213, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32165229

RESUMEN

In-situ forming implants receive great attention for repairing serious bone injuries. The aim of the present study was to prepare novel chitosan in-situ forming implants (CIFI) loaded with bioactive glass nanoparticles and/or raloxifene hydrochloride (RLX). Incorporating raloxifene hydrochloride (RLX) as a selective estrogen receptor modulator was essential to make use of its anti-resorptive properties. The prepared formulae were tested for their in-vitro gelation time, drug release, injectability, rheological properties, erosion rate and morphological properties. Results revealed that the formulation composed of 1% (w/v) chitosan with 2% (w/v) NaHCO3 and 1% (w/v) bioactive glass nanoparticles (CIFI-BG) possessed the most sustained drug release profile which extended over four months with low burst release effect compared to the same formulation lacking bioactive glass nanoparticles (CIFI). Selected formulations were tested for their ability to enhance bone regeneration in induced puncture in rate tibia. Results declared that these formulations were able to enhance bone regeneration after 12 weeks in comparison to the untreated tibial punctures and that containing bioactive glass could be considered as novel approach for treatment of serious bone injuries which require long term treatment and internal mechanical bone support during healing.


Asunto(s)
Conservadores de la Densidad Ósea/síntesis química , Quitosano/síntesis química , Composición de Medicamentos/métodos , Nanopartículas/química , Clorhidrato de Raloxifeno/síntesis química , Tibia/efectos de los fármacos , Animales , Conservadores de la Densidad Ósea/administración & dosificación , Conservadores de la Densidad Ósea/metabolismo , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Quitosano/administración & dosificación , Quitosano/metabolismo , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Implantes de Medicamentos/administración & dosificación , Implantes de Medicamentos/síntesis química , Implantes de Medicamentos/metabolismo , Vidrio/química , Masculino , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Clorhidrato de Raloxifeno/administración & dosificación , Clorhidrato de Raloxifeno/metabolismo , Ratas , Ratas Sprague-Dawley , Tibia/lesiones , Tibia/metabolismo , Resultado del Tratamiento
19.
Pharmaceutics ; 11(10)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658642

RESUMEN

To explore the mechanism of drug release and depot formation of in situ forming implants (ISFIs), osthole-loaded ISFIs were prepared by dissolving polylactide, poly(lactide-co-glycolide), polycaprolactone, or poly(trimethylene carbonate) in different organic solvents, including N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), and triacetin (TA). Drug release, polymer degradation, solvent removal rate and depot microstructure were examined. The burst release effect could be reduced by using solvents exhibit slow forming phase inversion and less permeable polymers. Both the drug burst release and polymer depot microstructure were closely related to the removal rate of organic solvent. Polymers with higher permeability often displayed faster drug and solvent diffusion rates. Due to high polymer-solvent affinity, some of the organic solvent remained in the depot even after the implant was completely formed. The residual of organic solvent could be predicted by solubility parameters. The ISFI showed a lower initial release in vivo than that in vitro. In summary, the effects of different polymers and solvents on drug release and depot formation in ISFI systems were extensively investigated and discussed in this article. The two main factors, polymer permeability and solvent removal rate, were involved in different stages of drug release and depot formation in ISFI systems.

20.
ACS Biomater Sci Eng ; 5(4): 1849-1856, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33405558

RESUMEN

In this study, we have developed a tunable polymer vascular embolic implant (TPVEI) with adjustable precipitation rates allowing for personalized, controlled vascular occlusion depths. We hypothesized that reducing the water miscibility of the solvent would result in slower TPVEI precipitation, leading to distal vascular occlusion. To investigate homogeneous vascular distribution and occlusion control, the TPVEI was directly injected into the portal vein of a rat and imaged with microCT. Changing the solvent ratio of NMP/BB from 100/0 to 50/50 showed a significant (p < 0.05) decrease in vessel size occluded from 675 ± 20 to 170 ± 25 µm, respectively. The 60/40 (NMP/BB) formulation was able to occlude several branches throughout the whole liver, displaying a homogeneous vasculature distribution. Broadband Doppler ultrasound validated that there was complete portal vein occlusion after embolization with all materials. These findings suggest that adjusting the solvent polarity allows embolization control and with appropriate optimization, phase-inverting embolics could be used better to control depth of occlusion for endovascular therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA