Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods ; 132: 57-65, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716510

RESUMEN

Toxicity affecting humans is studied by observing the effects of chemical substances in animal organisms (in vivo) or in animal and human cultivated cell lines (in vitro). Toxicogenomics studies collect gene expression profiles and histopathology assessment data for hundreds of drugs and pollutants in standardized experimental designs using different model systems. These data are an invaluable source for analyzing genome-wide drug response in biological systems. However, a problem remains that is how to evaluate the suitability of heterogeneous in vitro and in vivo systems to model the many different aspects of human toxicity. We propose here that a given model system (cell type or animal organ) is supported to appropriately describe a particular aspect of human toxicity if the set of compounds associated in the literature with that aspect of toxicity causes a change in expression of genes with a particular function in the tested model system. This approach provides candidate genes to explain the toxicity effect (the differentially expressed genes) and the compounds whose effect could be modeled (the ones producing both the change of expression in the model system and that are associated with the human phenotype in the literature). Here we present an application of this approach using a computational pipeline that integrates compound-induced gene expression profiles (from the Open TG-GATEs database) and biomedical literature annotations (from the PubMed database) to evaluate the suitability of (human and rat) in vitro systems as well as rat in vivo systems to model human toxicity.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Animales , Células Cultivadas , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Humanos , Ratas , Toxicogenética , Transcriptoma
2.
Diagnostics (Basel) ; 9(3)2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540126

RESUMEN

An understanding of the molecular pathogenesis and heterogeneity of ovarian cancer holds promise for the development of early detection strategies and novel, efficient therapies. In this review, we discuss the advantages and limitations of animal models available for basic and preclinical studies. The fruit fly model is suitable mainly for basic research on cellular migration, invasiveness, adhesion, and the epithelial-to-mesenchymal transition. Higher-animal models allow to recapitulate the architecture and microenvironment of the tumor. We discuss a syngeneic mice model and the patient derived xenograft model (PDX), both useful for preclinical studies. Conditional knock-in and knock-out methodology allows to manipulate selected genes at a given time and in a certain tissue. Such models have built our knowledge about tumor-initiating genetic events and cell-of-origin of ovarian cancers; it has been shown that high-grade serous ovarian cancer may be initiated in both the ovarian surface and tubal epithelium. It is postulated that clawed frog models could be developed, enabling studies on tumor immunity and anticancer immune response. In laying hen, ovarian cancer develops spontaneously, which provides the opportunity to study the genetic, biochemical, and environmental risk factors, as well as tumor initiation, progression, and histological origin; this model can also be used for drug testing. The chick embryo chorioallantoic membrane is another attractive model and allows the study of drug response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA