Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Chromosomes Cancer ; 63(7): e23258, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011998

RESUMEN

Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.


Asunto(s)
Neoplasias Pulmonares , Proteínas de Fusión Oncogénica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , China , Proteínas de Fusión Oncogénica/genética , Persona de Mediana Edad , Anciano , Adulto
2.
BMC Genomics ; 25(1): 349, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589806

RESUMEN

The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.


Asunto(s)
Genoma , Cabras , Humanos , Animales , Cabras/genética , Genómica/métodos , Fenotipo , Genotipo , Modelos Genéticos
3.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956486

RESUMEN

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , China , Carácter Cuantitativo Heredable
4.
BMC Genomics ; 25(1): 698, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014331

RESUMEN

BACKGROUND: Inner Mongolia cashmere goat (IMCG), renowned for its superior cashmere quality, is a Chinese indigenous goat breed that has been developed through natural and artificial selection over a long period. However, recently, the genetic resources of IMCGs have been significantly threatened by the introduction of cosmopolitan goat breeds and the absence of adequate breed protection systems. RESULTS: In order to assess the conservation effectiveness of IMCGs and efficiently preserve and utilize the purebred germplasm resources, this study analyzed the genetic diversity, kinship, family structure, and inbreeding of IMCGs utilizing resequencing data from 225 randomly selected individuals analyzed using the Plink (v.1.90), GCTA (v.1.94.1), and R (v.4.2.1) software. A total of 12,700,178 high-quality SNPs were selected through quality control from 34,248,064 SNP sites obtained from 225 individuals. The average minor allele frequency (MAF), polymorphic information content (PIC), and Shannon information index (SHI) were 0.253, 0.284, and 0.530, respectively. The average observed heterozygosity (Ho) and the average expected heterozygosity (He) were 0.355 and 0.351, respectively. The analysis of the identity by state distance matrix and genomic relationship matrix has shown that most individuals' genetic distance and genetic relationship are far away, and the inbreeding coefficient is low. The family structure analysis identified 10 families among the 23 rams. A total of 14,109 runs of homozygosity (ROH) were identified in the 225 individuals, with an average ROH length of 1014.547 kb. The average inbreeding coefficient, calculated from ROH, was 0.026 for the overall population and 0.027 specifically among the 23 rams, indicating a low level of inbreeding within the conserved population. CONCLUSIONS: The IMCGs exhibited moderate polymorphism and a low level of kinship with inbreeding occurring among a limited number of individuals. Simultaneously, it is necessary to prevent the loss of bloodline to guarantee the perpetuation of the IMCGs' germplasm resources.


Asunto(s)
Variación Genética , Cabras , Polimorfismo de Nucleótido Simple , Animales , Cabras/genética , Secuenciación Completa del Genoma , Frecuencia de los Genes , Endogamia , China
5.
Environ Res ; 253: 119154, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754616

RESUMEN

Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.


Asunto(s)
Bacterias , Lagos , Plancton , Lagos/microbiología , Lagos/química , China , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota , Monitoreo del Ambiente
6.
Ecotoxicol Environ Saf ; 281: 116621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901171

RESUMEN

Water replenishment is an important measure for maintaining and improving the aquatic environmental quality of lakes. The problems of water quality deterioration and water shortage can be alleviated by introducing water of higher quality. However, the mechanism of water replenishment in the improvement of the water quality and trophic status of lakes remains unclear. This study investigated water replenishment in Wuliangsuhai Lake (WLSHL) from 2011 to 2021 by collecting seasonal water samples and conducting laboratory analyses. Water replenishment was found to be capable of significantly improving lake water quality and alleviating eutrophication. It is worth noting that single long-term water replenishment measures have limitations in improving the water quality and trophic status. The whole process was divided into three stages according to the water quality and trophic status, namely the buffer period, decline period, and stable period. During the buffer period, the water quality and trophic status showed only slight improvement because of the small amount of water replenishment and the low proportion of higher-quality water from the Yellow River. In the decline period, with increasing water replenishment, the proportion of higher-quality water from the Yellow River gradually increased, leading to the most significant and stable degree of improvement. In the stable period, increases in the amount of water replenishment had little effect on improving the water quality and trophic status, which is attributable to the balance between internal pollutants (lake water-sediment), and the balance between internal-external pollutants (lake water-irrigation return flow + Yellow River water). On the premise of stable water quality, with eutrophication control as the management goal, the optimal water replenishment would be approximately 10.58 ×108 m3. Further necessary measures for solving aquatic environmental problems include the combination of sediment dredging, optimization of the water replenishment route, and implementation of quality management in water replenishment.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos , Calidad del Agua , Lagos/química , China , Estaciones del Año , Animales , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos , Ríos/química
7.
J Environ Manage ; 370: 122430, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243645

RESUMEN

Although wind power contributes to the reduction of greenhouse gas emissions, it also has significant impacts on the local climate and vegetation. Exploring these impacts is important for the sustainable development of wind power. Therefore, based on moderate-resolution imaging spectroradiometer (MODIS) data and other remote sensing data from 2003 to 2022, this paper investigated the impacts of 101 grassland wind farms (WFs) in Inner Mongolia on land-atmosphere water and heat exchange, vegetation growth, ecosystem primary productivity, and vegetation structural characteristics during the growing season and revealed the spatial distribution patterns of the impacts of WFs as well as differences between different types of grasslands. The results indicated that WFs increased the nighttime land surface temperature (LST), decreased evapotranspiration (ET), inhibited vegetation growth, decreased gross primary productivity (GPP), and reduced the leaf area index (LAI) in growing season grasslands. This effect varied across different types of grasslands and showed significant complexity. In terms of land-atmosphere water and heat exchange, nighttime LST increases and ET decreases were significant in the typical steppe but not in the meadow steppe. In terms of vegetation change, meadow steppe had the most inhibited vegetation growth and the greatest reduction in GPP. In terms of the impact range, WFs on typical steppe and meadow steppe have opposite effects on vegetation growth and ecosystem primary productivity inside and outside of them, i.e., they inhibit vegetation growth and reduce GPP inside the WF areas but promote vegetation growth and increase GPP outside the WF areas. Compared with previous studies, this study analyzed multiple climate and vegetation indicators based on many WF samples, which reduced the uncertainty associated with a single sample and provided more comprehensive and comparable observations of different types of grasslands. These findings can help to balance the relationship between wind power development and ecological protection.

8.
J Environ Manage ; 354: 120415, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417359

RESUMEN

Aboveground biomass (AGB) in grasslands directly reflects the net primary productivity, making it a sensitive indicator of grassland resource quality and ecological degradation. Accurately estimating AGB over large regions to reveal long-term AGB evolution trends remains a formidable challenge. In this study, we divided Inner Mongolia Autonomous Region (IMAR) grasslands into three study regions based on their spatial distribution of grassland types. We combined remote sensing data with ground-based sample data collected over the past 19 years from 6114 field plots using the Google Earth Engine platform. We constructed random forest (RF) and traditional regression AGB inversion models for each region and selected the best-performing model through accuracy assessment to estimate IMAR grassland AGB for the period 2000-2022. We also examined the trends in AGB changes and identified the driving forces affecting IMAR grasslands through the application of Theil-Sen estimation, Mann-Kendall trend analysis, and the Geodetector model. The main findings are as follows: (1) Compared with the univariate parametric traditional regression model, the AGB monitoring accuracy of the multivariate non-parametric RF model in the three study regions increased by 5.94%, 5.08% and 19.14%, respectively. (2) The average AGB per unit area of IMAR grasslands from 2000 to 2022 was 731.41 kg/hm2, with alpine meadow having the highest average AGB (1271.70 kg/hm2) and temperate grassland desertification having the lowest (469.06 kg/hm2). IMAR grasslands exhibited an overall increasing trend in AGB over the past 23 years (6.01 kg/hm2•yr), with the increasing trend covering 83.52% of the grassland area and the decreasing trend covering 16.48%. (3) Spatially, IMAR grassland AGB showed a gradual decline from northeast to southwest and exhibited an increasing trend with increasing longitude (45.423 kg/hm2 per degree) and latitude (71.9 kg/hm2 per degree). (4) Meteorological factors were the most significant factors affecting IMAR grassland AGB, with precipitation (five-year average q value of 0.61) being the most prominent. In the western part of IMAR, where precipitation is consistently limited throughout the year, the primary drivers of influence were human activities, with particular emphasis on the number of livestock (with a five-year average q value of 0.44). It is evident that reducing human activity disturbance and pressure in fragile grassland areas or implementing near-natural restoration measures will be beneficial for the sustainable development of grassland ecosystems. The results of this research hold substantial reference importance for the protection and restoration of grasslands, the supervision and administration of grassland resources, as well as the development of policies related to grassland management.


Asunto(s)
Ecosistema , Pradera , Animales , Humanos , Biomasa , China , Ganado
9.
Yi Chuan ; 46(5): 421-430, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763776

RESUMEN

Inner Mongolia cashmere goat is an excellent livestock breed formed through long-term natural selection and artificial breeding, and is currently a world-class dual-purpose breed producing cashmere and meat. Multi trait animal model is considered to significantly improve the accuracy of genetic evaluation in livestock and poultry, enabling indirect selection between traits. In this study, the pedigree, genotype, environment, and phenotypic records of early growth traits of Inner Mongolia cashmere goats were used to build multi trait animal model., Then three methods including ABLUP, GBLUP, and ssGBLUP wereused to estimate the genetic parameters and genomic breeding values of early growth traits (birth weight, weaning weight, average daily weight gain before weaning, and yearling weight). The accuracy and reliability of genomic estimated breeding value are further evaluated using the five fold cross validation method. The results showed that the heritability of birth weight estimated by three methods was 0.13-0.15, the heritability of weaning weight was 0.13-0.20, heritability of daily weight gain before weaning was 0.11-0.14, and the heritability of yearling weight was 0.09-0.14, all of which belonged to moderate to low heritability. There is a strong positive genetic correlation between weaning weight and daily weight gain before weaning, daily weight gain before weaning and yearling weight, with correlation coefficients of 0.77-0.79 and 0.56-0.67, respectively. The same pattern was found in phenotype correlation among traits. The accuracy of the estimated breeding values by ABLUP, GBLUP, and ssGBLUP methods for birth weight is 0.5047, 0.6694, and 0.7156, respectively; the weaning weight is 0.6207, 0.6456, and 0.7254, respectively; the daily weight gain before weaning was 0.6110, 0.6855, and 0.7357 respectively; and the yearling weight was 0.6209, 0.7155, and 0.7756, respectively. In summary, the early growth traits of Inner Mongolia cashmere goats belong to moderate to low heritability, and the speed of genetic improvement is relatively slow. The genetic improvement of other growth traits can be achieved through the selection of weaning weight. The ssGBLUP method has the highest accuracy and reliability in estimating genomic breeding value of early growth traits in Inner Mongolia cashmere goats, and is significantly higher than that from ABLUP method, indicating that it is the best method for genomic breeding of early growth weight in Inner Mongolia cashmere goats.


Asunto(s)
Cruzamiento , Cabras , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , Genómica/métodos , Femenino , Masculino , Peso al Nacer/genética , Modelos Genéticos
10.
BMC Infect Dis ; 23(1): 406, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316793

RESUMEN

BACKGROUND: Tuberculosis (TB) remains one of the most serious infectious diseases worldwide. China has the second highest TB burden globally, but existing studies have mostly neglected the post-tuberculosis (post-TB) disease burden. This study estimated the disease burden of TB and post-TB in Inner Mongolia, China, from 2016 to 2018. METHODS: Population data were collected from TB Information Management System. Post-TB disease burden was defined as the burden caused by Chronic Obstructive Pulmonary Disease (COPD) occurring after patients with TB were cured. To estimate the incidence rate of TB, standardized mortality rate, life expectancy, and cause eliminated life expectancy, using descriptive epidemiological, abridged life table and cause eliminated life table. On this basis, the Disability-Adjusted Life Years (DALY), Years Lived with Disability (YLD) and Years of Life Lost (YLL) due to TB were further be estimated. The data were analyzed using Excel 2016 and SPSS 26.0. Joinpoint regression models were used to estimate the time and age trends of the disease burden of TB and post-TB. RESULTS: The TB incidence in 2016, 2017, and 2018 was 41.65, 44.30, and 55.63/100,000, respectively. The standardized mortality in the same period was 0.58, 0.65, and 1.08/100,000, respectively. From 2016 to 2018, the total DALYs of TB and post-TB were 5923.33, 6258.03, and 8194.38 person-years, and the DALYs of post-TB from 2016 to 2018 were 1555.89, 1663.33, and 2042.43 person-years. Joinpoint regression showed that the DALYs rate increased yearly from 2016 to 2018, and the rate of males was higher than that of females. TB and post-TB DALYs rates showed a rising tendency with increasing age (AAPC values were 149.6% and 157.0%, respectively, P < 0.05), which was higher in the working-age population and elderly. CONCLUSION: The disease burden of TB and post-TB was heavy and increased year by year in Inner Mongolia from 2016 to 2018. Compared with the youngster and females, working-age population and the elderly and males had a higher disease burden. Policymakers should be paid more attention to the patients' sustained lung injury after TB cured. There is a pressing need to identify more effective measures for reducing the burden of TB and post-TB of people, to improve their health and well-being.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Tuberculosis , Anciano , Femenino , Masculino , Humanos , Tuberculosis/complicaciones , Tuberculosis/epidemiología , China/epidemiología , Costo de Enfermedad , Esperanza de Vida , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
11.
BMC Geriatr ; 23(1): 632, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803256

RESUMEN

OBJECTIVE: This study aimed to measure the parameters of the proximal femur in the older people of Inner Mongolia, China and understand the influence of age and gender so as to provide guidance for the design and improvement of prosthesis for total hip arthroplasty. METHODS: A total of 236 patients who underwent CT angiography of lower limbs in the Department of Imaging, Affiliated Hospital of Inner Mongolia Medical University of China were collected. They were divided into 4 groups according to age: < 60 (group A), 60-69 (group B), 70-79 (group C), and > 80 years (group D). Four anatomical parameters, including femoral head diameter (FHD), femoral neck-shaft angle (FNSA), femoral offset (FO), femoral neck anteversion (FNA), were measured by Mimics 21.0. Comparisons were made between age groups of the same gender and between genders in the same age group to analyze the correlation of the 4 parameters of proximal femur with age and gender. In addition, the results of this study were compared with previous studies. RESULTS: There were no significant differences in FHD and FO between age groups, indicating no correlation with age. FNSA and FNA were no significantly different between group C and group D in the same gender, whereas there were significant differences between other age groups and were negatively correlated with age. There were significant differences in FHD and FO between genders in the same age group, with the males being larger than the females. FNSA and FNA were no significant differences between genders in the same age group. CONCLUSIONS: FNSA and FNA decrease with age. FHD and FO were larger in males than in females in all age groups. Age and gender should be considered in the design of prosthesis.


Asunto(s)
Relevancia Clínica , Articulación de la Cadera , Humanos , Femenino , Masculino , Anciano , Fémur/diagnóstico por imagen , Extremidad Inferior , China/epidemiología
12.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514746

RESUMEN

In this study, multiple remote sensing data were used to quantitatively evaluate the contributions of surface water, soil moisture and groundwater to terrestrial water storage (TWS) changes in five groundwater resources zones of Inner Mongolia (GW_I, GW_II, GW_III, GW_IV and GW_V), China. The results showed that TWS increased at the rate of 2.14 mm/a for GW_I, while it decreased at the rate of 4.62 mm/a, 5.89 mm/a, 2.79 mm/a and 2.62 mm/a for GW_II, GW_III, GW_IV and GW_V during 2003-2021. Inner Mongolia experienced a widespread soil moisture increase with the rate of 4.17 mm/a, 2.13 mm/a, 1.20 mm/a, 0.25 mm/a and 1.36 mm/a for the five regions, respectively. Significant decreases were detected for regional groundwater storage (GWS) with the rate of 2.21 mm/a, 6.76 mm/a, 6.87 mm/a, 3.01 mm/a, and 4.14 mm/a, respectively. Soil moisture was the major contributor to TWS changes in GW_I, which accounted 58% of the total TWS changes. Groundwater was the greatest contributor to TWS changes in other four regions, especially GWS changes, which accounted for 76% TWS changes in GW_IV. In addition, this study found that the role of surface water was notable for calculating regional GWS changes.

13.
J Environ Manage ; 345: 118807, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591093

RESUMEN

Phosphorus (P) is a limiting nutrient second only to nitrogen (N) in the drylands of the world. Most previous studies have focused on N transformation processes in grassland ecosystems, particularly under artificial fertilization with N and atmospheric N deposition. However, P cycling processes under natural conditions and when P is applied as an inorganic P fertilizer have been understudied. Therefore, it is essential to examine the fate of applied P in grassland ecosystems that have experienced long-term grazing and, under certain circumstances, continuous hay harvest. We conducted a 3-year field experiment with the addition of multiple nutrient elements in a typical meadow steppe to investigate the fate of the applied P in various fractions of P pools in the top soil. We found that the addition of multiple nutrients significantly increased P concentrations in the labile inorganic P (Lab-Pi) and moderately occluded inorganic P (Mod-Pi) fractions but not in the recalcitrant inorganic P (Rec-Pi) fraction. An increase in the concentration of total inorganic P was found only when P and N were applied together. However, the addition of other nutrients did not change P concentrations in any fraction of the mineral soil. The addition of P and N significantly increased the total amount of P taken up by the aboveground plants but had no effect on the levels of organic and microbial P in the soil. Together, our results indicate that the P applied in this grassland ecosystem is taken up by plants, leaving most of the unutilized P as Lab-Pi and Mod-Pi rather than being immobilized in Rec-Pi or by microbial biomass. This implies that the grassland ecosystem that we studied has a relatively low P adsorption capacity, and the application of inorganic P to replenish soil P deficiency in degraded grasslands due to long-term grazing of livestock or continuous harvest of forage in the region could be a practical management strategy to maintain soil P fertility.


Asunto(s)
Ecosistema , Pradera , Fósforo , Carbono/análisis , Biomasa , Suelo , Plantas , Nitrógeno/análisis , Nutrientes , Fertilizantes , China
14.
J Environ Manage ; 348: 119375, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883834

RESUMEN

Grasslands provide multiple ecosystem services (ESs) including provisioning, regulating, supporting, and cultural services that are largely affected by livestock grazing. Linking plant functional traits (PFTs) to ecosystem processes and functions has attracted extensive ecological research to explore the responses and inter-relations of ecosystem services to environmental and management changes. However, little information is available on the links between PFTs and ESs in most ecosystems. We conducted a grazing experiment to investigate the response of PFTs at different levels, including in plant organs (leaves and stems), individual plants, and the overall community in a typical steppe region of Inner Mongolia. Additionally, we examined the effect of animal grazing at four intensities (nil, light, moderate, and heavy) and explored the dynamic interconnections between PFTs and ecosystem services in grasslands. Our analysis revealed that the highest total ecosystem service and provisioning service were achieved under light- and moderate-grazing treatments, respectively. Heavy grazing also increased provisioning service but with a large decline in regulating and total ecosystem services. These changes in ESs were closely associated with grazing-induced variations in PFTs. Compared to no grazing, light grazing increased plant size-related functional traits, such as height, leaf length, leaf area, stem length, and the ratio of stem length to diameter. In contrast, heavy grazing decreased these PFTs. Provisioning and regulating services were determined by plant above-ground community function and structural properties, while supporting service was jointly affected by the below-ground community and soil properties. Our results indicate that light grazing should be recommended for the best total ESs, although moderate grazing may lead to high short-term economic benefits. Moreover, PFTs are powerful indicators for provisioning and regulating services. These findings provide a valuable reference for developing effective management practices to achieve targeted ESs using PFTs as indicators.


Asunto(s)
Ecosistema , Pradera , Animales , Plantas , China , Herbivoria , Suelo/química
15.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4078-4086, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37802775

RESUMEN

Inner Mongolia autonomous region of China and Mongolia are the primary regions where Chinese and Mongolian medicine and its medicinal plant resources are distributed. In this study, 133 families, 586 genera, and 1 497 species of medicinal plants in Inner Mongolia as well as 62 families, 261 genera, and 467 species of medicinal plants in Mongolia were collected through field investigation, specimen collection and identification, and literature research. And the species, geographic distribution, and influencing factors of the above medicinal plants were analyzed. The results revealed that there were more plant species utilized for medicinal reasons in Inner Mongolia than in Mongolia. Hotspots emerged in Hulunbuir, Chifeng, and Tongliao of Inner Mongolia, while there were several hotspots in Eastern province, Sukhbaatar province, Gobi Altai province, Bayankhongor province, Middle Gobi province, Kobdo province, South Gobi province, and Central province of Mongolia. The interplay of elevation and climate made a non-significant overall contribution to the diversity of plant types in Inner Mongolia and Mongolia. The contribution of each factor increased significantly when the vegetation types of Inner Mongolia and Mongolia were broadly divided into forest, grassland and desert. Thus, the distribution of medicinal plant resources and vegetation cover were jointly influenced by a variety of natural factors such as topography, climate and interactions between species, and these factors contributed to and constrained each other. This study provided reference for sustainable development and rational exploitation of medicinal plant resources in future.


Asunto(s)
Plantas Medicinales , Humanos , Mongolia , Clima , Medicina Tradicional Mongoliana , China
16.
BMC Plant Biol ; 22(1): 85, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216546

RESUMEN

BACKGROUND: For better understanding the mechanism of Reaumuria soongarica community formation in a salt stressed grassland ecosystem, we designed a field experiment to test how leaves salt secretion changes the competitive relationship between species in this plant communities. RESULTS: Among the three species (R. soongarica, Stipa glareosa and Allium polyrhizum) of the salt stressed grassland ecosystem, the conductivity of R. soongarica rhizosphere soil was the highest in five soil layers (0-55 cm depth). The high soil conductivity can increase the daily salt secretion rate of plant leaves of R. soongarica. In addition, we found the canopy size of R. soongarica was positively related to the distance from S. glareosa or A. polyrhizum. The salt-tolerance of R. soongarica was significantly higher than the other two herbs (S. glareosa and A. polyrhizum). Moreover, there was a threshold (600 µS/cm) for interspecific competition of plants mediated by soil conductivity. When the soil conductivity was lower than 600 µS/cm, the relative biomass of R. soongarica increased with the soil conductivity increase. CONCLUSIONS: The efficient salt secretion ability of leaves increases soil conductivity under the canopy. This leads the formation of a "saline island" of R. soongarica. Meanwhile R. soongarica have stronger salt tolerance than S. glareosa and A. polyrhizum. These promote the competitiveness of R. soongarica and inhibit interspecies competition advantage of the other two herbs (S. glareosa and A. polyrhizum) in the plant community. It is beneficial for R. soongarica to establish dominant communities in saline regions of desert grassland.


Asunto(s)
Hojas de la Planta/metabolismo , Sales (Química)/metabolismo , Tamaricaceae/fisiología , Allium/fisiología , China , Clima Desértico , Pradera , Poaceae/fisiología , Rizosfera , Salinidad , Tolerancia a la Sal , Suelo/química , Tamaricaceae/crecimiento & desarrollo
17.
New Phytol ; 236(6): 2091-2102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36110049

RESUMEN

Grassland ecosystems cover c. 40% of global land area and contain c. 40% of soil organic carbon. Understanding the effects of adding nutrients to grasslands is essential because they provide much of our food, support diverse ecosystem services and harbor rich biodiversity. Using the meadow steppe (grassland) study site of Inner Mongolia, we manipulated seven key nutrients and a cocktail of micronutrients to examine their effects on grassland biomass productivity and diversity. The results, explained in structural equation models, link two previously disparate hypotheses in grassland ecology: (1) the light asymmetry competition hypothesis and (2) the genome size-nutrient interaction hypothesis. We show that aboveground net primary productivity increases predominantly from species with large genome sizes with the addition of nitrogen, and nitrogen plus phosphorus. This drives an asymmetric competition for light, causing a decline in species richness mainly in species with small genome sizes. This dynamic is likely to be caused by the nutrient demands of the nucleus and/or the scaling effects of nuclear size on cell size which impact water use efficiency. The model will help inform the best management approaches to reverse the rapid and unprecedented degradation of grasslands globally.


Asunto(s)
Ecosistema , Pradera , Suelo/química , Tamaño del Genoma , Carbono , Plantas/metabolismo , Nitrógeno/metabolismo , Nutrientes , Genoma de Planta
18.
Environ Res ; 215(Pt 1): 114253, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067843

RESUMEN

Vegetation cover is one of the primary indicators of changes in ecosystems. China has implemented a few large-scale afforestation programs in the arid and semi-arid areas, including the Inner Mongolia Reach of the Yellow River Basin to prevent and control soil erosion. Although these programs have alleviated the environment problems in the region to a certain extent, the effects of the increasing vegetation greenness on the environments under climate change remain controversial for the argued large water consumption. In this study, the spatio-temporal characteristics of Normalized Difference Vegetation Index (NDVI) in the vegetation coverage area of the study area based on remote sensing data from 2001 to 2018. Meanwhile, using the Extreme Gradient Boosting (XGBoost) method - an excellent algorithm for ensemble learning methods - to forecast vegetation growth in the following ten years. The results indicated that, despite of the spatial heterogeneity, the vegetation NDVI exhibited a significant increase across the study area. Based on the NDVI trend, the area of improved vegetation in this region was much larger than the degraded area from 2001 to 2018, accounting for 85.9% and 8.6% of the total vegetation coverage area, respectively. However, the forecasting result by the Hurst index shows the future growth and carbon sequestration capacity in most areas showed a declining trend. Further, based on the Coupled Model Inter comparison Project - Phase 6 (CMIP6) data, the XGBoost method is used to predict the growth status and carbon sequestration capacity of vegetation in this area under different climate scenarios. The results showed that different climate scenarios had little effect on vegetation growth from 2019 to 2030. Results from this study may provide basis for the protection of ecological environment in the Inner Mongolia Reach of the Yellow River Basin.


Asunto(s)
Ecosistema , Ríos , China , Cambio Climático , Monitoreo del Ambiente/métodos
19.
BMC Public Health ; 22(1): 115, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039022

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) remain the leading cause of premature mortality and burden of diseases in the world. The Inner Mongolia Autonomous Region is located in northern China, constitute 17.66% individuals with Mongolian, which have unique diet and lifestyles. Therefore, the Inner Mongolian Healthy Aging Study (IMAGINS) was designed to explore risk factors for chronic diseases and evaluate the effectiveness of health management on CVDs in population at high-risk. METHODS: The IMAGINS is an ongoing and prospective cohort study of men and women aged ≥35 years from Inner Mongolian Autonomous Region, northern China. This study performed in investigating risk factors for CVDs, screening and providing health management strategy for high-risk population of CVDs. The IMAGINS began in September 2015 and scheduled to recruiting and follow-up outcome until 2030. For general population, a long-term follow-up will be conducted every 5 years to collect the information above and data on clinical outcomes. For high-risk population, comprehensive health managements were performed and scheduled to follow-up annually. All IMAGINS participants are followed for incident CVDs and death. DISCUSSION: The IMAGINS is designed to increase understanding how cardiovascular-related risk factors contribute to the development of CVDs and the positive effect of health management strategy for high-risk CVD participants. Key features of this study include (i) a carefully characterized cohort between high risk of CVDs and non-high risk population; (ii) detailed measurement of CVDs risk factors and health management strategies for high risk population; (iii) long-term follow-up of CVDs and death. The IMAGINS represents a good research opportunity to investigate clinical and genetic factors in high-risk population, might providing basis for the prevention and control of non-communicable diseases.


Asunto(s)
Enfermedades Cardiovasculares , Envejecimiento Saludable , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Estudios Prospectivos , Factores de Riesgo
20.
J Dairy Sci ; 105(11): 9162-9178, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175226

RESUMEN

Low-temperature conditions influence cattle productivity and survivability. Understanding the metabolic regulations of specific cattle breeds and identifying potential biomarkers related to cold challenges are important for cattle management and optimization of genetic improvement programs. In this study, 28 Inner-Mongolia Sanhe and 22 Holstein heifers were exposed to -25°C for 1 h to evaluate the differences in metabolic mechanisms of thermoregulation. In response to this acute cold challenge, altered rectal temperature was only observed in Holstein cattle. Further metabolome analyses showed a greater baseline of glycolytic activity and mobilization of AA in Sanhe cattle during normal conditions. Both breeds responded to the acute cold challenge by altering their metabolism of volatile fatty acids and AA for gluconeogenesis, which resulted in increased glucose levels. Furthermore, Sanhe cattle mobilized the citric acid cycle activity, and creatine and creatine phosphate metabolism to supply energy, whereas Holstein cattle used greater AA metabolism for this purpose. Altogether, we found that propionate and methanol are potential biomarkers of acute cold challenge response in cattle. Our findings provide novel insights into the biological mechanisms of acute cold response and climatic resilience, and will be used as the basis when developing breeding tools for genetically selecting for improved cold adaptation in cattle.


Asunto(s)
Creatina , Propionatos , Bovinos , Animales , Femenino , Creatina/metabolismo , Metanol , Mongolia , Fosfocreatina/metabolismo , Metaboloma , Biomarcadores/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA