Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848677

RESUMEN

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Asunto(s)
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Células Madre/metabolismo , Células Madre/citología , Linaje de la Célula , Regeneración , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/citología , Ratones Endogámicos C57BL , Homeostasis
2.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38614091

RESUMEN

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Asunto(s)
Interleucina-33 , Mastocitos , Proteínas de Unión a Fosfato , Mastocitos/inmunología , Mastocitos/metabolismo , Animales , Interleucina-33/metabolismo , Interleucina-33/inmunología , Ratones , Proteínas de Unión a Fosfato/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Comunicación Celular/inmunología
3.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38744292

RESUMEN

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Asunto(s)
Acetilcolina , Mucosa Intestinal , Animales , Acetilcolina/metabolismo , Ratones , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Colina O-Acetiltransferasa/metabolismo , Interleucina-13/metabolismo , Interleucina-13/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Helmintiasis/inmunología , Helmintiasis/parasitología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inmunidad Innata , Nematospiroides dubius/inmunología , Células en Penacho
4.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992711

RESUMEN

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores Dopaminérgicos
5.
Immunity ; 53(5): 1001-1014.e20, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33022229

RESUMEN

The gut epithelium is populated by intraepithelial lymphocytes (IELs), a heterogeneous T cell population with cytotoxic and regulatory properties, which can be acquired at the epithelial layer. However, the role of T cell receptor (TCR) in this process remains unclear. Single-cell transcriptomic analyses revealed distinct clonal expansions between cell states, with CD4+CD8αα+ IELs being one of the least diverse populations. Conditional deletion of TCR on differentiating CD4+ T cells or of major histocompatibility complex (MHC) class II on intestinal epithelial cells prevented CD4+CD8αα+ IEL differentiation. However, TCR ablation on differentiated CD4+CD8αα+ IELs or long-term cognate antigen withdraw did not affect their maintenance. TCR re-engagement of antigen-specific CD4+CD8αα+ IELs by Listeria monocytogenes did not alter their state but correlated with reduced bacterial invasion. Thus, local antigen recognition is an essential signal for differentiation of CD4+ T cells at the epithelium, yet differentiated IELs are able to preserve an effector program in the absence of TCR signaling.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Evolución Clonal/genética , Evolución Clonal/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunofenotipificación , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Immunity ; 48(5): 963-978.e3, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768179

RESUMEN

Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.


Asunto(s)
Acetilcolina/inmunología , Caenorhabditis elegans/inmunología , Mucosa Intestinal/inmunología , Vía de Señalización Wnt/inmunología , Acetilcolina/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/inmunología , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica/inmunología , Homeostasis/genética , Homeostasis/inmunología , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/inmunología , Neuronas/metabolismo , Vía de Señalización Wnt/genética
7.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36691900

RESUMEN

Intestinal homeostasis depends on interactions between the intestinal epithelium, the immune system and the microbiota. Because of these complicated connections, there are many problems that need to be solved. Current research has indicated that genes targeted by Wnt signaling are responsible for controlling intestinal stem cell fate and for modulating intestinal homeostasis. Our data show that loss of frizzled 7 (Fzd7), an important element in Wnt signaling, interrupts the differentiation of mouse intestinal stem cells into absorptive progenitors instead of secretory progenitors (precursors of goblet and Paneth cells). The alteration in canonical Wnt and Notch signaling pathways interrupts epithelial homeostasis, resulting in a decrease in physical protection in the intestine. Several phenotypes in our Fzd7-deleted model were similar to the features of enterocolitis, such as shortened intestines, decreased numbers of goblet cells and Paneth cells, and severe inflammation. Additionally, loss of Fzd7 exacerbated the defects in a chemical-induced colitis model and could initiate tumorigenesis. These findings may provide important information for the discovery of efficient therapeutic methods to treat enterocolitis and related cancers in the intestines.


Asunto(s)
Enterocolitis , Células de Paneth , Animales , Ratones , Diferenciación Celular , Enterocolitis/metabolismo , Células Caliciformes/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Intestinos , Vía de Señalización Wnt
8.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997696

RESUMEN

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Receptores Toll-Like , Humanos , Células CACO-2 , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Transducción de Señal
9.
Annu Rev Physiol ; 84: 435-459, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614372

RESUMEN

Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD and, in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Colitis/metabolismo , Colitis/patología , Humanos , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/metabolismo , Intestinos/patología , Mitocondrias/metabolismo
10.
Semin Cell Dev Biol ; 150-151: 35-42, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36889997

RESUMEN

The intestinal epithelium plays crucial roles in maintaining gut homeostasis. A key function consists in constituting a physical and chemical barrier between self and non-self-compartments, and, based on its crosstalk with the luminal environment, in controlling activation of the host immune system. Tuft cells are a unique epithelial cell lineage, the function of which remained a mystery even 50 years after their initial discovery. The first function of intestinal tuft cells was recently described, with a central role in initiating type 2 immune responses following infection with helminth parasites. Since then, tuft cells have emerged as sentinel cells recognizing a variety of luminal cues, mediating the host-microorganisms crosstalk with additional pathogens, including viruses and bacteria. Although it can be anticipated that more functions will be discovered for tuft cells in the future, recent discoveries already propelled them at the forefront of gut mucosal homeostasis regulation, with important potential impact in gut physiopathology. This review focuses on intestinal tuft cells, from their initial description to the current understanding of their functions, and their potential impact in diseases.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Células Epiteliales/metabolismo , Inmunidad , Linaje de la Célula , Sistema Inmunológico
11.
J Biol Chem ; 300(2): 105643, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199574

RESUMEN

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.


Asunto(s)
Actinas , Actomiosina , Humanos , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo
12.
EMBO Rep ; 24(2): e54261, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36545778

RESUMEN

CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.


Asunto(s)
Quinasas Ciclina-Dependientes , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Mucosa Intestinal , Transducción de Señal , Animales , Ratones , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Fosforilación
13.
Gut ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857990

RESUMEN

OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.

14.
Gut ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684238

RESUMEN

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.

15.
Am J Physiol Cell Physiol ; 326(5): C1345-C1352, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557358

RESUMEN

The recent development of single-cell transcriptomics highlighted the existence of a new lineage of mature absorptive cells in the human intestinal epithelium. This subpopulation is characterized by the specific expression of Bestrophin 4 (BEST4) and of other marker genes including OTOP2, CA7, GUCA2A, GUCA2B, and SPIB. BEST4+ cells appear early in development and are present in all regions of the small and large intestine at a low abundance (<5% of all epithelial cells). Location-specific gene expression profiles in BEST4+ cells suggest their functional specialization in each gut region, as exemplified by the small intestine-specific expression of the ion channel CFTR. The putative roles of BEST4+ cells include sensing and regulation of luminal pH, tuning of guanylyl cyclase-C signaling, transport of electrolytes, hydration of mucus, and secretion of antimicrobial peptides. However, most of these hypotheses lack functional validation, notably because BEST4+ cells are absent in mice. The presence of BEST4+ cells in human intestinal organoids indicates that this in vitro model should be suitable to study their role. Recent studies showed that BEST4+ cells are also present in the intestinal epithelium of macaque, pig, and zebrafish and, here, we report their presence in rabbits, which suggests that these species could be appropriate animal models to study BEST4+ cells during the development of diseases and their interactions with environmental factors such as diet or the microbiota. In this review, we summarize the existing literature regarding BEST4+ cells and emphasize the description of their predicted roles in the intestinal epithelium in health and disease.NEW & NOTEWORTHY BEST4+ cells are a novel subtype of mature absorptive cells in the human intestinal epithelium highlighted by single-cell transcriptomics. The gene expression profile of BEST4+ cells suggests their role in pH regulation, electrolyte secretion, mucus hydration, and innate immune defense. The absence of BEST4+ cells in mice requires the use of alternative animal models or organoids to decipher the role of this novel type of intestinal epithelial cells.


Asunto(s)
Mucosa Intestinal , Animales , Humanos , Mucosa Intestinal/metabolismo , Bestrofinas/metabolismo , Bestrofinas/genética , Conejos , Células Epiteliales/metabolismo
16.
J Biol Chem ; 299(11): 105280, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742924

RESUMEN

The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.


Asunto(s)
Células Epiteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Sumoilación , Humanos , Células CACO-2 , Células Epiteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sumoilación/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
17.
J Biol Chem ; 299(4): 103017, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791912

RESUMEN

Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor ß (TGFß) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFß signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFß receptor 1 (TGFßR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFßR1 mRNA and protein expression in these cells. Effects on TGFßR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFßR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFßR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFßR1 signaling axis. In further support of a link between PKCα and TGFß signaling, PKCα knockdown reduced the ability of TGFß to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFßR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFßR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFßR1 in endometrial cancer cells, and PKCα, Runx2, and TGFßR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFß signaling may be a common mechanism in diverse epithelial tissues.


Asunto(s)
Neoplasias Colorrectales , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteína Quinasa C-alfa , Receptor Tipo I de Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/metabolismo , Intestinos , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G163-G175, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988603

RESUMEN

The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1ß mRNA (il-1ß) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.


Asunto(s)
Colitis , Propionibacterium freudenreichii , Receptores Fc , Sulfatos , Humanos , Ratones , Animales , Células CACO-2 , Dextranos/farmacología , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/metabolismo , Inflamación/metabolismo , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad
19.
Artículo en Inglés | MEDLINE | ID: mdl-38563893

RESUMEN

After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the Aryl Hydrocarbon Receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes nor immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio was observed. These findings may represent an unfavorable prognosis when exposed to DSS-induced epithelial damage compared to females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.

20.
J Virol ; 97(1): e0145522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633410

RESUMEN

Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.


Asunto(s)
Quirópteros , Murinae , Infecciones por Rotavirus , Rotavirus , Animales , Quirópteros/virología , Diarrea/veterinaria , Diarrea/virología , Genoma Viral , Genotipo , Kenia , Filogenia , Rotavirus/genética , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/veterinaria , Murinae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA