Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455474

RESUMEN

A series of novel benzenesulfonamide derivatives were synthesized bearing para-N ß,γ-amino acid or para-N ß-amino acid and thiazole moieties and their binding to the human carbonic anhydrase (CA) isozymes determined. These enzymes are involved in various illnesses, such as glaucoma, altitude sickness, epilepsy, obesity, and even cancer. There are numerous compounds that are inhibitors of CA and used as pharmaceuticals. However, most of them bind to most CA isozymes with little selectivity. The design of high affinity and selectivity towards one CA isozyme remains a significant challenge. The beta and gamma amino acid-substituted compound affinities were determined by the fluorescent thermal shift assay and isothermal titration calorimetry for all 12 catalytically active human carbonic anhydrase isozymes, showing the full affinity and selectivity profile. The structures of several compounds were determined by X-ray crystallography, and the binding mode in the active site of CA enzyme was shown.

2.
Methods Mol Biol ; 1964: 61-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30929235

RESUMEN

Isothermal titration calorimetry (ITC) is one of the main techniques to determine specific interactions between molecules dissolved in aqueous solution. This technique is commonly used in drug development programs when low-molecular-weight molecules are sought that bind tightly and specifically to a protein (disease target) molecule. The method allows a complete thermodynamic characterization of an interaction, i.e., ITC enables direct determination of the model-independent observed interaction change in enthalpy (ΔH) and a model-dependent observed interaction affinity (change in Gibbs free energy, ΔG) in a single experiment. The product of temperature and change in entropy (TΔS) can be obtained by the subtraction of ΔG from ΔH, and the change in heat capacity (ΔCp) can be determined as a slope of the temperature dependence of the binding ΔH.Despite the apparent value of ITC in characterization of interactions, it is often forgotten that many protein-ligand binding reactions are linked to protonation-deprotonation reactions or various conformational changes. In such cases, it is important to determine the linked-reaction contributions and obtain the intrinsic values of the changes in Gibbs energy (affinity), enthalpy, and entropy. These energy values can then be used in various SAR-type structure-thermodynamics and combined with structure-kinetics correlations in drug design, when searching for small molecules that would bind the protein target molecule. This manuscript provides a detailed protocol on how to determine the intrinsic values of protein-ligand binding thermodynamics by ITC.


Asunto(s)
Calorimetría/métodos , Diseño de Fármacos , Proteínas/química , Agua/química , Entropía , Humanos , Cinética , Ligandos , Temperatura , Termodinámica
3.
PeerJ ; 6: e4412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503769

RESUMEN

The structure-thermodynamics correlation analysis was performed for a series of fluorine- and chlorine-substituted benzenesulfonamide inhibitors binding to several human carbonic anhydrase (CA) isoforms. The total of 24 crystal structures of 16 inhibitors bound to isoforms CA I, CA II, CA XII, and CA XIII provided the structural information of selective recognition between a compound and CA isoform. The binding thermodynamics of all structures was determined by the analysis of binding-linked protonation events, yielding the intrinsic parameters, i.e., the enthalpy, entropy, and Gibbs energy of binding. Inhibitor binding was compared within structurally similar pairs that differ by para- or meta-substituents enabling to obtain the contributing energies of ligand fragments. The pairs were divided into two groups. First, similar binders-the pairs that keep the same orientation of the benzene ring exhibited classical hydrophobic effect, a less exothermic enthalpy and a more favorable entropy upon addition of the hydrophobic fragments. Second, dissimilar binders-the pairs of binders that demonstrated altered positions of the benzene rings exhibited the non-classical hydrophobic effect, a more favorable enthalpy and variable entropy contribution. A deeper understanding of the energies contributing to the protein-ligand recognition should lead toward the eventual goal of rational drug design where chemical structures of ligands could be designed based on the target protein structure.

4.
Biophys Chem ; 205: 51-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26079542

RESUMEN

Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Entropía , Sulfonamidas/química , Sulfonamidas/metabolismo , Calorimetría , Anhidrasas Carbónicas/química , Halogenación , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Isomerismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Protones , Agua/química , Zinc/química , Bencenosulfonamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA