Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709923

RESUMEN

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Asunto(s)
Proteínas 14-3-3 , Dendritas , Cinesinas , Proteínas Serina-Treonina Quinasas , Receptores de Transferrina , Cinesinas/metabolismo , Cinesinas/genética , Proteínas 14-3-3/metabolismo , Dendritas/metabolismo , Fosforilación , Receptores de Transferrina/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Sitios de Unión , Microtúbulos/metabolismo , Ratas , Ratones , Unión Proteica
2.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049714

RESUMEN

Membrane blebbing-dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D-environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D-collagen, while RhoB overexpression enhanced blebbing and 3D-collagen migration in a manner dependent on its plasma membrane localization and down-stream effectors ROCK and Myosin II RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11-positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D-migration of ALL cells. In conclusion, KIF13A-mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Movimiento Celular , Cinesinas/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Línea Celular Tumoral , Estructuras de la Membrana Celular/genética , Colágeno/genética , Colágeno/metabolismo , Endosomas/genética , Endosomas/metabolismo , Humanos , Cinesinas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteína de Unión al GTP rhoB/genética
3.
EMBO Rep ; 19(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30404817

RESUMEN

Recycling endosomes (REs) are transient endosomal tubular intermediates of early/sorting endosomes (E/SEs) that function in cargo recycling to the cell surface and deliver the cell type-specific cargo to lysosome-related organelles such as melanosomes in melanocytes. However, the mechanism of RE biogenesis is largely unknown. In this study, by using an endosomal Rab-specific RNAi screen, we identified Rab22A as a critical player during RE biogenesis. Rab22A-knockdown results in reduced RE dynamics and concurrent cargo accumulation in the E/SEs or lysosomes. Rab22A forms a complex with BLOC-1, BLOC-2 and the kinesin-3 family motor KIF13A on endosomes. Consistently, the RE-dependent transport defects observed in Rab22A-depleted cells phenocopy those in BLOC-1-/BLOC-2-deficient cells. Further, Rab22A depletion reduced the membrane association of BLOC-1/BLOC-2. Taken together, these findings suggest that Rab22A promotes the assembly of a BLOC-1-BLOC-2-KIF13A complex on E/SEs to generate REs that maintain cellular and organelle homeostasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Proteínas de Unión al GTP rab/metabolismo , Animales , Membrana Celular/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Ratones , Pigmentación , Pigmentos Biológicos/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN , Transducción de Señal
4.
J Cell Sci ; 130(23): 4038-4050, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061883

RESUMEN

Influenza A is a rapidly evolving virus that is successful in provoking periodic epidemics and occasional pandemics in humans. Viral assembly is complex as the virus incorporates an eight-partite genome of RNA (in the form of viral ribonucleoproteins, vRNPs), and viral genome assembly - with its implications to public health - is not completely understood. It has previously been reported that vRNPs are transported to the cell surface on Rab11-containing vesicles by using microtubules but, so far, no molecular motor has been assigned to the process. Here, we have identified KIF13A, a member of the kinesin-3 family, as the first molecular motor to efficiently transport vRNP-Rab11 vesicles during infection with influenza A. Depletion of KIF13A resulted in reduced viral titers and less accumulation of vRNPs at the cell surface, without interfering with the levels of other viral proteins at sites of viral assembly. In addition, when overexpressed and following two separate approaches to displace vRNP-Rab11 vesicles, KIF13A increased levels of vRNP at the plasma membrane. Together, our results show that KIF13A plays an important role in the transport of influenza A vRNPs, a crucial step for viral assembly.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Virus de la Influenza A/patogenicidad , Cinesinas/metabolismo , Transporte de Proteínas/fisiología , Ribonucleoproteínas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Genoma Viral/genética , Humanos , Microtúbulos/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología
5.
J Biol Chem ; 291(7): 3581-94, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26680000

RESUMEN

Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3.


Asunto(s)
Cinesinas/química , Modelos Moleculares , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Docilidad , Mutación Puntual , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Secuencias Repetidas en Tándem
6.
Front Genet ; 14: 1289346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155713

RESUMEN

The prevalence of Anaplastic Lymphoma Kinase gene (ALK) fusion is about 5% among patients with lung adenocarcinoma, underscoring the importance of pinpointing distinct fusion variants for optimizing treatment approaches. This is the first reported case of a 74-year-old female with stage IV lung adenocarcinoma, featuring a novel Kinesin Family Member 13A (KIF13A)-ALK fusion, identified via next-generation sequencing (NGS) and confirmed with fluorescence in situ hybridization (FISH). Initially undergoing chemotherapy and then crizotinib, she achieved a partial response (PR) before progressing with multiple bone metastases. However, subsequent treatment with alectinib as a third-line option yielded positive results. A stable disease state persisted for an impressive 31 months of progression-free survival (PFS), accompanied by minimal toxicity symptoms. Up until now, a remarkable near 4-year span of overall survival (OS) has been consistently observed and monitored. This report of a KIF13A-ALK fusion case benefit significantly from alectinib with extensive follow-up. The case diversifies the array of ALK fusion partners and holds clinical relevance in refining therapeutic choices for KIF13A-ALK fusion-associated lung cancer.

7.
Front Cell Dev Biol ; 10: 877532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547822

RESUMEN

Molecular motors of the kinesin superfamily (KIF) are a class of ATP-dependent motor proteins that transport cargo, including vesicles, along the tracks of the microtubule network. Around 45 KIF proteins have been described and are grouped into 14 subfamilies based on the sequence homology and domain organization. These motors facilitate a plethora of cellular functions such as vesicle transport, cell division and reorganization of the microtubule cytoskeleton. Current studies suggest that KIF13A, a kinesin-3 family member, associates with recycling endosomes and regulates their membrane dynamics (length and number). KIF13A has been implicated in several processes in many cell types, including cargo transport, recycling endosomal tubule biogenesis, cell polarity, migration and cytokinesis. Here we describe the recent advances in understanding the regulatory aspects of KIF13A motor in controlling the endosomal dynamics in addition to its structure, mechanism of its association to the membranes, regulators of motor activity, cell type-specific cargo/membrane transport, methods to measure its activity and its association with disease. Thus, this review article will provide our current understanding of the cell biological roles of KIF13A in regulating endosomal membrane remodeling.

8.
Matrix Biol ; 107: 1-23, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122963

RESUMEN

MT1-MMP plays a crucial role in promoting the cellular invasion of cancer cells by degrading the extracellular matrix to create a path for migration. During this process, its localization at the leading edge of migrating cells is critical, and it is achieved by targeted transport of MT1-MMP-containing vesicles along microtubules by kinesin superfamily motor proteins (KIFs). Here we identified three KIFs involved in MT1-MMP vesicle transport: KIF3A, KIF13A, and KIF9. Knockdown of KIF3A and KIF13A effectively inhibited MT1-MMP-dependent collagen degradation and invasion, while knockdown of KIF9 increased collagen degradation and invasion. Our data suggest that KIF3A/KIF13A dependent MT1-MMP vesicles transport takes over upon KIF9 knockdown. Live-cell imaging analyses have indicated that KIF3A and KIF13A coordinate to transport the same MT1-MMP-containing vesicles from the trans-Golgi to the endosomes, and KIF13A alone transports the vesicle from the endosome to the plasma membrane. Taken together, we have identified a unique interplay between three KIFs to regulate leading edge localization of MT1-MMP and MT1-MMP-dependent cancer cell invasion.


Asunto(s)
Cinesinas , Metaloproteinasa 14 de la Matriz , Línea Celular Tumoral , Movimiento Celular , Endosomas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Cinesinas/genética , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica
9.
Neurosci Lett ; 733: 135082, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32461107

RESUMEN

The ability to adapt to stress is an essential defensive function of a living body, and disturbance of this ability in the brain may contribute to the development of affective illness including major depression and anxiety disorders. A growing body of evidence suggests that brain serotonin (5-HT)1A receptors may be involved, at least in part, in the development of adaptation to stress. 5-HT1A receptor was reported to be transported by KIF13A, a motor protein and a member of the kinesin superfamily, from the golgi apparatus to the plasma membrane. The aim of the present study was to characterize the expression pattern of 5-HT1A receptor and KIF13A in the hippocampus of stress-adaptive and -maladaptive mice. Mice were either exposed to repeated adaptable (1 h/day) or unadaptable (4 h/day) restraint stress, or left in their home cage for 14 days. The levels of 5-HT1A receptor and KIF13A expression were assessed by western blot analysis. To confirm the formation of a 5-HT1A receptor and KIF13A complex, we performed blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (BN-SDS-PAGE). Western blotting showed that neither 5-HT1A receptor nor KIF13A expression changed significantly in the hippocampal total extract of stress-adaptive and -maladaptive mice. In contrast, expression of 5 H T1A receptor and KIF13A in the hippocampal membrane fraction was increased in stress-adaptive mice, but not in stress-maladaptive mice. BN-SDS-PAGE analysis revealed that the bands of 5-HT1A receptor and KIF13A were both observed at a molecular weight of approximately 70 kDa, which indicated that 5-HT1A receptor and KIF13A form a complex. The present findings suggest that translocation of 5-HT1A receptor in complex with KIF13A to the plasma membrane of the hippocampus may play an important role in the formation of stress adaptation.


Asunto(s)
Ajuste Emocional/fisiología , Hipocampo/metabolismo , Cinesinas/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/fisiología , Ratones , Receptor de Serotonina 5-HT1A/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118552, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31487503

RESUMEN

KIF13B, a kinesin-3 family motor, was originally identified as GAKIN due to its biochemical interaction with human homolog of Drosophila discs-large tumor suppressor (hDLG1). Unlike its homolog KIF13A, KIF13B contains a carboxyl-terminal CAP-Gly domain. To investigate the function of the CAP-Gly domain, we developed a mouse model that expresses a truncated form of KIF13B protein lacking its CAP-Gly domain (KIF13BΔCG), whereas a second mouse model lacks the full-length KIF13A. Here we show that the KIF13BΔCG mice exhibit relatively higher serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in KIF13BΔCG mouse embryo fibroblasts. The plasma level of factor VIII was not significantly elevated in the KIF13BΔCG mice, suggesting that the CAP-Gly domain region of KIF13B selectively regulates LRP1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or plasma factor VIII was observed in the full length KIF13A null mouse model. The deletion of the CAP-Gly domain region caused subcellular mislocalization of truncated KIF13B concomitant with the mislocalization of LRP1. Mechanistically, the cytoplasmic domain of LRP1 interacts specifically with the alternatively spliced I3 domain of DLG1, which complexes with KIF13B via their GUK-MBS domains, respectively. Importantly, double mutant mice generated by crossing KIF13A null and KIF13BΔCG mice suffer from perinatal lethality showing potential craniofacial defects. Together, this study provides first evidence that the carboxyl-terminal region of KIF13B containing the CAP-Gly domain is important for the LRP1-DLG1-KIF13B complex formation with implications in the regulation of metabolism, cell polarity, and development.


Asunto(s)
Homólogo 1 de la Proteína Discs Large/metabolismo , Cinesinas/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Cell Discov ; 3: 17011, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496990

RESUMEN

Mannose-6-phosphate receptor (M6PR) that facilitates cellular uptake of M6P-bearing proteins, including serine-protease granzyme-B (Gzm-B) has an important role in T-cell activation, migration and contraction. However, molecular mechanisms controlling M6PR expression in T cells remain poorly understood. Here, we show that M6PR expression on T cells is distinctively controlled by two common γ-chain cytokines interleukin-2 (IL-2) and IL-7, and the differential M6PR expression is not caused by an altered synthesis of M6PR protein, but is a result of distinct regulation of kinesin-3 motor-protein KIF13A that transport M6PR onto cell surfaces. Using signaling pathway-specific inhibitors, we determine that IL-2 and IL-7 distinctly regulate KIF13A and ß1-adaptin and cell-surface M6PR by controlling a kinase mammalian target of rapamycin complex-1 (mTORC1). Inflammatory cytokine IL-2 and prosurvival cytokine IL-7 induce strong and weak activation of mTORC1, leading to up- and downregulation of motor-protein KIF13A and KIF13A-motorized M6PR on T cells, and formation of IL-2 and IL-7 effectors with M6PRhigh and M6PRlow cell-surface expression, respectively. Inhibition of mTORC1 by rapamycin reduces T-cell expression of KIF13A and cell-surface M6PR, and increases T-cell survival in Listeria monocytogenes-infected mice. Using regulatory T (Treg)-cell-enriched mouse tumor model, we determine that M6PRhigh IL-2 effectors but not M6PRlow IL-7 effectors adoptively transferred into tumors are vulnerable to Treg Gzm-B-mediated cell apoptosis. Inhibition of mTORC1 or small interfering RNA-mediated knockdown of KIF13A or M6PR renders IL-2 effectors refractory to Treg Gzm-B lethal hit. Overall, our data offer novel mechanistic insights into T-cell M6PR regulation, and Treg-resistant/Treg-susceptible phenomenon. Furthermore, regulation of T-cell fate vis-à-vis Treg suppression via the mTORC1-KIF13A-M6PR axis provides a proof of concept for therapeutic strategies to target cancer, infectious and autoimmune diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA