Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 73(11): 3477-3495, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188965

RESUMEN

The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/metabolismo
2.
Plant J ; 101(2): 293-309, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31587430

RESUMEN

The transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is a Class II KNOTTED1-like homeobox (KNOX2) gene that, in interfascicular fibres, acts as a negative regulator of secondary cell wall biosynthesis. In addition, knat7 loss-of-function mutants display an irregular xylem (irx) phenotype, suggesting a potential positive regulatory role in xylem vessel secondary cell wall deposition. Although our understanding of the role of KNAT7 is evolving, the function(s) of the closely related KNOX2 genes, KNAT3, KNAT4, and KNAT5, in secondary wall formation still remain unclear. We found that all four Arabidopsis KNOX2 genes were expressed in the inflorescence stems. However, only the knat3 knat7 double mutants showed a phenotype, displaying an enhanced irx phenotypes relative to the single mutants, as well as decreased interfascicular fibre cell wall thickness. Moreover, knat3 knat7 double mutants had reduced stem tensile and flexural strength compared with wild-type and single mutants. In contrast, KNAT3 overexpression resulted in thicker interfascicular fibre secondary cell walls in inflorescence stems, suggesting a potential positive regulation in interfascicular fibre secondary wall development. This work identifies KNAT3 as a potential transcriptional activator working together with KNAT7 to promote secondary cell wall biosynthesis in xylem vessels, while concurrently acting antagonistically with KNAT7 to influence secondary wall formation in interfascicular fibres.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Transcriptoma , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas de Homeodominio/genética , Mutación , Proteínas Nucleares , Fenotipo , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Xilema/citología , Xilema/metabolismo
3.
Plant J ; 99(4): 733-751, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021017

RESUMEN

The secondary cell wall is an important carbon sink in higher plants and its biosynthesis requires coordination of metabolic fluxes in the phenylpropanoid pathway. In Arabidopsis (Arabidopsis thaliana), MYB75 and the KNOX transcription factor KNAT7 form functional complexes to regulate secondary cell wall formation in the inflorescence stem. However, the molecular mechanism by which these transcription factors control different branches of the phenylpropanoid pathway remains poorly understood in woody species. We isolated an R2R3-MYB transcription factor MYB6 from Populus tomentosa and determined that it was expressed predominately in young leaves. Overexpression of MYB6 in transgenic poplar upregulated flavonoid biosynthetic gene expression, resulting in significantly increased accumulation of anthocyanin and proanthocyanidins. MYB6-overexpression plants showed reduced secondary cell wall deposition, accompanied by repressed expression of secondary cell wall biosynthetic genes. We further showed that MYB6 interacted physically with KNAT7 and formed functional complexes that acted to repress secondary cell wall development in poplar and Arabidopsis. The results provide an insight into the transcriptional mechanisms involved in the regulation of the metabolic fluxes between the flavonoid and lignin biosynthetic pathways in poplar.


Asunto(s)
Antocianinas/metabolismo , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
4.
J Exp Bot ; 71(18): 5469-5483, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32474603

RESUMEN

The function of the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is still unclear since it appears to be either a negative or a positive regulator for secondary cell wall deposition with its loss-of-function mutant displaying thicker interfascicular and xylary fiber cell walls but thinner vessel cell walls in inflorescence stems. To explore the exact function of KNAT7, class II KNOTTED1-LIKE HOMEOBOX (KNOX II) genes in Arabidopsis including KNAT3, KNAT4, and KNAT5 were studied together. By chimeric repressor technology, we found that both KNAT3 and KNAT7 repressors exhibited a similar dwarf phenotype. Both KNAT3 and KNAT7 genes were expressed in the inflorescence stems and the knat3 knat7 double mutant exhibited a dwarf phenotype similar to the repressor lines. A stem cross-section of knat3 knat7 displayed an enhanced irregular xylem phenotype as compared with the single mutants, and its cell wall thickness in xylem vessels and interfascicular fibers was significantly reduced. Analysis of cell wall chemical composition revealed that syringyl lignin was significantly decreased while guaiacyl lignin was increased in the knat3 knat7 double mutant. Coincidently, the knat3 knat7 transcriptome showed that most lignin pathway genes were activated, whereas the syringyl lignin-related gene Ferulate 5-Hydroxylase (F5H) was down-regulated. Protein interaction analysis revealed that KNAT3 and KNAT7 can form a heterodimer, and KNAT3, but not KNAT7, can interact with the key secondary cell wall formation transcription factors NST1/2, which suggests that the KNAT3-NST1/2 heterodimer complex regulates F5H to promote syringyl lignin synthesis. These results indicate that KNAT3 and KNAT7 synergistically work together to promote secondary cell wall biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lignina , Proteínas Nucleares , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
5.
J Exp Bot ; 71(14): 4125-4139, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277756

RESUMEN

As a major hemicellulose component of plant cell walls, xylans play a determining role in maintaining the wall structure. However, the mechanisms of transcriptional regulation of xylan biosynthesis remain largely unknown. Arabidopsis seed mucilage represents an ideal system for studying polysaccharide biosynthesis and modifications of plant cell walls. Here, we identify KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7) as a positive transcriptional regulator of xylan biosynthesis in seed mucilage. The xylan content was significantly reduced in the mucilage of the knat7-3 mutant and this was accompanied by significantly reduced expression of the xylan biosynthesis-related genes IRREGULAR XYLEM 14 (IRX14) and MUCILAGE MODIFIED 5/MUCILAGE-RELATED 21 (MUM5/MUCI21). Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation with quantitative PCR verified the direct binding of KNAT7 to the KNOTTED1 (KN1) binding site [KBS,TGACAG(G/C)T] in the promoters of IRX7, IRX14, and MUM5/MUCI21 in vitro, in vivo, and in planta. Furthermore, KNAT7 directly activated the expression of IRX14 and MUM5/MUCI21 in transactivation assays in mesophyll protoplasts, and overexpression of IRX14 or MUM5/MUCI21 in knat7-3 partially rescued the defects in mucilage adherence. Taken together, our results indicate that KNAT7 positively regulates xylan biosynthesis in seed-coat mucilage via direct activation of the expression of IRX14 and MUM5/MUCI21.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Mucílago de Planta/metabolismo , Polisacáridos , Proteínas Represoras/metabolismo , Semillas/metabolismo , Xilanos
6.
Front Plant Sci ; 13: 852373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371162

RESUMEN

Seed dormancy in wild mungbean (Vigna radiata var. sublobata) may be useful for the breeding of cultivated mungbean (var. radiata) with pre-harvest sprouting resistance. Previous studies have identified two major quantitative trait loci (QTLs) for seed dormancy, HsA and Sdwa5.1.1+, in wild mungbean that are possibly having the same locus or linked. However, these QTLs have not been confirmed/verified and a molecular basis of seed dormancy in mungbean is not yet known. In this study, we aimed to finely map the Sdwa5.1.1+ and identify candidate gene(s) for this locus. Microscopic observations revealed that wild mungbean "ACC41" seeds had a palisade cuticle layer, while cultivated mungbean "Kamphaeng Saen 2" (KPS2) seeds lacked this layer. Fine mapping using an F2 population developed from a cross between ACC41 and KPS2 revealed two linked QTLs, Sdwa5.1.1+ and Sdwa5.1.2+, controlling seed dormancy. The Sdwa5.1.1+ was confirmed in an F2:3 population derived from the same cross and mapped to a 3.298-Kb region containing only one gene LOC106767068, designated as VrKNAT7-1, which encodes the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7), a class II KNOTTED1-LIKE HOMEOBOX (KNOX II) protein. VrKNAX7 sequence alignment between ACC41 and KPS2 revealed several polymorphisms in the coding, untranslated, and promoter regions. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of VrKNAT7-1 and VrCYP86A, a putative downstream regulation of VrKNAT7-1, in the seed coat of ACC41 is statistically much higher than that of KPS2. Altogether, these results indicate that VrKNAT7-1 controls physical seed dormancy in the wild mungbean ACC41.

7.
Front Plant Sci ; 8: 218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28316604

RESUMEN

The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA