Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 11: e16164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818330

RESUMEN

Background: Aberrant protein kinase regulation leading to abnormal substrate phosphorylation is associated with several human diseases. Despite the promise of therapies targeting kinases, many human kinases remain understudied. Most existing computational tools predicting phosphorylation cover less than 50% of known human kinases. They utilize local feature selection based on protein sequences, motifs, domains, structures, and/or functions, and do not consider the heterogeneous relationships of the proteins. In this work, we present KSFinder, a tool that predicts kinase-substrate links by capturing the inherent association of proteins in a network comprising 85% of the known human kinases. We also postulate the potential role of two understudied kinases based on their substrate predictions from KSFinder. Methods: KSFinder learns the semantic relationships in a phosphoproteome knowledge graph using a knowledge graph embedding algorithm and represents the nodes in low-dimensional vectors. A multilayer perceptron (MLP) classifier is trained to discern kinase-substrate links using the embedded vectors. KSFinder uses a strategic negative generation approach that eliminates biases in entity representation and combines data from experimentally validated non-interacting protein pairs, proteins from different subcellular locations, and random sampling. We assess KSFinder's generalization capability on four different datasets and compare its performance with other state-of-the-art prediction models. We employ KSFinder to predict substrates of 68 "dark" kinases considered understudied by the Illuminating the Druggable Genome program and use our text-mining tool, RLIMS-P along with manual curation, to search for literature evidence for the predictions. In a case study, we performed functional enrichment analysis for two dark kinases - HIPK3 and CAMKK1 using their predicted substrates. Results: KSFinder shows improved performance over other kinase-substrate prediction models and generalized prediction ability on different datasets. We identified literature evidence for 17 novel predictions involving an understudied kinase. All of these 17 predictions had a probability score ≥0.7 (nine at >0.9, six at 0.8-0.9, and two at 0.7-0.8). The evaluation of 93,593 negative predictions (probability ≤0.3) identified four false negatives. The top enriched biological processes of HIPK3 substrates relate to the regulation of extracellular matrix and epigenetic gene expression, while CAMKK1 substrates include lipid storage regulation and glucose homeostasis. Conclusions: KSFinder outperforms the current kinase-substrate prediction tools with higher kinase coverage. The strategically developed negatives provide a superior generalization ability for KSFinder. We predicted substrates of 432 kinases, 68 of which are understudied, and hypothesized the potential functions of two dark kinases using their predicted substrates.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Proteínas Quinasas , Humanos , Proteínas Quinasas/genética , Fosforilación , Algoritmos , Proteoma/química
2.
Cell Rep ; 34(8): 108771, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626354

RESUMEN

Mass spectrometry (MS)-based phosphoproteomics has revolutionized our ability to profile phosphorylation-based signaling in cells and tissues on a global scale. To infer the action of kinases and signaling pathways in phosphoproteomic experiments, we present PhosR, a set of tools and methodologies implemented in a suite of R packages facilitating comprehensive analysis of phosphoproteomic data. By applying PhosR to both published and new phosphoproteomic datasets, we demonstrate capabilities in data imputation and normalization by using a set of "stably phosphorylated sites" and in functional analysis for inferring active kinases and signaling pathways. In particular, we introduce a "signalome" construction method for identifying a collection of signaling modules to summarize and visualize the interaction of kinases and their collective actions on signal transduction. Together, our data and findings demonstrate the utility of PhosR in processing and generating biological knowledge from MS-based phosphoproteomic data.


Asunto(s)
Hígado/metabolismo , Espectrometría de Masas , Fibras Musculares Esqueléticas/metabolismo , Proteoma , Proteómica , Transducción de Señal , Diseño de Software , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Tumoral , Activación Enzimática , Insulina/farmacología , Hígado/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fosforilación , Proteoma/efectos de los fármacos , Ratas , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA