Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Food Chem X ; 23: 101614, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108624

RESUMEN

Kiwi starch (KS) is a new fruit-derived starch-based food material. In this study, wheat flour was partially replaced with 10-20% KS to make bread, and the influence of this substitution on mixed flour, dough processing performance, bread quality, and shelf life was investigated. KS substitution improved the water-binding ability of mixed flour, making it easier to gelatinize while improving viscoelasticity but reducing the integrity of the dough's gluten network structure. As the substitution rate increases, the hardness, air-cell ratio, and width-to-height ratio of bread significantly increased, while the springiness, resilience, baking loss, and specific volume reduced significantly (p < 0.05). KS enriched the bread's color and flavor by promoting the Maillard reaction during baking. Overall acceptability of 10% KS group was highest in sensory evaluation. KS substitution significantly reduced starch digestibility and expected glycemic index (GI), inhibited mold growth and reproduction during storage and prolonged the shelf life of the bread at 25 °C.

2.
Int J Biol Macromol ; 258(Pt 1): 128920, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141697

RESUMEN

Chinese steamed bread (CSB), a conventional high-GI staple food, with a short shelf life and a single flavor. In this work, 10-20 % kiwi starch (KS) was used to substitute wheat flour for the production of CSB and the effects of different substitution ratios on the quality and shelf life of mixed flour, dough, and CSB were explored. The results showed that the substitution of KS could improve the water binding capacity of mixed flour and lead to easier pasting in the system, lower the cooking power consumption, increase and improve the viscoelasticity and gas holding capacity of the dough, and make the microstructure more compact and uniform. As the substitution ratio increased, the reduction in protein content within the system further affected the formation of the gluten network, leading to a significant decrease in the CSB's specific volume and cohesiveness, whereas the chewiness and hardness were significantly improved. Meanwhile, KS substitution significantly reduced the starch hydrolysis rate and estimated glycemic index of CSB. 10 % KS substitution enriched the aroma and color of CSB, improved its internal organizational structure, and became more popular among consumers. A substitution ratio of 15-20 % was beneficial for extending the shelf life of CSB.


Asunto(s)
Pan , Harina , Harina/análisis , Pan/análisis , Almidón/química , Triticum/química , Vapor , Reología , China
3.
Ultrason Sonochem ; 86: 106004, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35429900

RESUMEN

Kiwi starch (KS) is a fruit-derived starch; in order to improve its processing performance and increase its added value, it is necessary to modify KS to enhance the positive attributes and to enlarge its application. In this study, KS was modified by high-power ultrasound treatment (HUT) to reveal the relationship between the structure and function of KS with different treatment powers (0, 200, 400, and 600 W) and different treatment times (0, 10, 20, and 30 min). The results showed that HUT destroyed the granular morphology of KS, formed holes and cracks on the surface, and reduced the particle size and the short-range molecular order of KS. After different HUTs, the apparent amylose content (AAC), swelling power (SP), water solubility index (WSI), viscosity and setback value (SB) of KS were significantly increased, while the gelatinization temperature was significantly decreased. In addition, HUT significantly reduced the content of rapidly digestible starch (RDS) and slowly digestible starch (SDS), while it significantly enhanced the content of resistant starch (RS) (64.08-72.73%). In a word, HUT as a novel physical modification method for KS, enlarged its application, and fulfilled different demands of a starch-based product, which introduces another possibility for kiwi fruit further processing.


Asunto(s)
Amilosa , Almidón , Amilosa/química , Digestión , Solubilidad , Almidón/química , Viscosidad
4.
Ultrason Sonochem ; 81: 105866, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34896805

RESUMEN

A new ultrasound-assisted enzymatic extraction (UAEE) method of starch from kiwifruit was established and optimized using response surface methodology (RSM). Under optimal conditions (the pectinase-to-cellulase-to-papain ratio = 1:2:1 g/kg, solid/liquid ratio = 1:6.68, extraction pH = 5.23, ultrasound power = 300 W, and extraction temperature = 52 °C), the kiwi starch (KS) yield was about 4.25%, and the starch content of KS was 873.23 mg/g. Compared to other extraction methods, UAEE can obtain KS with high yield and purity with a shorter extraction time and less solvent and enzyme. The extracted KS has a low gelatinization enthalpy (8.02 J/g) and a high peak viscosity (7933 cP), with obvious particle properties and low adhesion. In addition, KS is rich in polyphenols, has strong antioxidant activity, and has higher contents of amylose starch (30.74%) and resistant starch (60.18%). This study established a novel and highly efficient method for KS extraction and suggest several possible applications for KS in the food industry.


Asunto(s)
Frutas , Almidón , Ultrasonido , Frutas/química , Almidón/química , Almidón/aislamiento & purificación , Almidón/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA