Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(3): 632-643.e12, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607510

RESUMEN

Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/genética , ARN Interferente Pequeño/genética , Animales , Elementos Transponibles de ADN , Gammaretrovirus/metabolismo , Gammaretrovirus/patogenicidad , Productos del Gen env/genética , Productos del Gen env/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Productos del Gen pol/genética , Productos del Gen pol/metabolismo , Genoma , Células Germinativas/metabolismo , Células Germinativas/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Phascolarctidae/virología , Empalme del ARN , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Interferente Pequeño/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(6): e2220392121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305758

RESUMEN

Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered. The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion. West of the Wallace Line, gibbon ape leukemia viruses (GALVs) have been isolated from captive gibbons. Two microbat species from China appear to have been infected naturally. East of Wallace's Line, the woolly monkey virus (a GALV) and the closely related koala retrovirus (KoRV) have been detected in eutherians and marsupials in the Australo-Papuan region, often vertically transmitted. The detected vertically transmitted GALV-like viruses in Australo-Papuan fauna compared to sporadic horizontal transmission in Southeast Asia and China suggest the GALV-KoRV clade originates in the former region and further models of early-stage genome colonization may be found. We screened 278 samples, seven bat and one rodent family endemic to the Australo-Papuan region and bat and rodent species found on both sides of the Wallace Line. We identified two rodents (Melomys) from Australia and Papua New Guinea and no bat species harboring GALV-like retroviruses. Melomys leucogaster from New Guinea harbored a genomically complete replication-competent retrovirus with a shared integration site among individuals. The integration was only present in some individuals of the species indicating this retrovirus is at the earliest stages of germline colonization of the Melomys genome, providing a new small wild mammal model of early-stage genome colonization.


Asunto(s)
Quirópteros , Retrovirus Endógenos , Gammaretrovirus , Marsupiales , Animales , Virus de la Leucemia del Gibón/genética , Nueva Guinea , Gammaretrovirus/genética , Murinae/genética , Marsupiales/genética , Células Germinativas
3.
Proc Natl Acad Sci U S A ; 119(25): e2201844119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696585

RESUMEN

Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-ß) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-ß ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-ß retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-ß retroviruses in the Australasian fauna.


Asunto(s)
Betaretrovirus , Retrovirus Endógenos , Interacciones Microbiota-Huesped , Phascolarctidae , Infecciones por Retroviridae , Animales , Betaretrovirus/genética , Retrovirus Endógenos/genética , Evolución Molecular , Genoma , Genómica , Phascolarctidae/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología
4.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943984

RESUMEN

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Asunto(s)
Retrovirus Endógenos , Evolución Molecular , Gammaretrovirus , Phascolarctidae , Animales , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variación Genética , Nueva Gales del Sur , Phascolarctidae/virología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Victoria
5.
Vet Pathol ; 61(4): 621-632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38240274

RESUMEN

Chlamydiosis is one of the main causes of the progressive decline of koala populations in eastern Australia. While histologic, immunologic, and molecular studies have provided insights into the basic function of the koala immune system, the in situ immune cell signatures during chlamydial infection of the reproductive tract in koalas have not been investigated. Thirty-two female koalas and 47 males presented to wildlife hospitals with clinical signs suggestive of Chlamydia infection were euthanized with the entire reproductive tract collected for histology; immunohistochemistry (IHC) for T-cell (CD3ε, CD4, and CD8α), B-cell (CD79b), and human leukocyte antigen (HLA)-DR markers; and quantitative real-time polymerase chain reaction (rtPCR) for Chlamydia pecorum. T-cells, B-cells, and HLA-DR-positive cells were observed in both the lower and upper reproductive tracts of male and female koalas with a statistically significant associations between the degree of the inflammatory reaction; the number of CD3, CD4, CD79b, and HLA-DR positive cells; and the PCR load. CD4-positive cells were negatively associated with the severity of the gross lesions. The distribution of immune cells was also variable according to the location within the genital tract in both male and female koalas. These preliminary results represent a step forward towards further exploring mechanisms behind chlamydial infection immunopathogenesis, thus providing valuable information about the immune response and infectious diseases in free-ranging koalas.


Asunto(s)
Infecciones por Chlamydia , Chlamydia , Inmunohistoquímica , Phascolarctidae , Animales , Phascolarctidae/microbiología , Femenino , Infecciones por Chlamydia/veterinaria , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/patología , Infecciones por Chlamydia/microbiología , Masculino , Inmunohistoquímica/veterinaria , Chlamydia/inmunología , Infecciones del Sistema Genital/veterinaria , Infecciones del Sistema Genital/microbiología , Infecciones del Sistema Genital/patología , Infecciones del Sistema Genital/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Antígenos HLA-DR/metabolismo , Australia , Linfocitos T/inmunología
6.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493581

RESUMEN

Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.


Asunto(s)
Variación Genética/genética , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Retroviridae/genética , Animales , Evolución Molecular , Femenino , Masculino , Phascolarctidae , Queensland
7.
BMC Genomics ; 24(1): 427, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525141

RESUMEN

BACKGROUND: The study of the host-microbiome by the collection of non-invasive samples has the potential to become a powerful tool for conservation monitoring and surveillance of wildlife. However, multiple factors can bias the quality of data recovered from scats, particularly when field-collected samples are used given that the time of defecation is unknown. Previous studies using scats have shown that the impact of aerobic exposure on the microbial composition is species-specific, leading to different rates of change in microbial communities. However, the impact that this aging process has on the relationship between the bacterial and fungal composition has yet to be explored. In this study, we measured the effects of time post-defecation on bacterial and fungal compositions in a controlled experiment using scat samples from the endangered koala (Phascolarctos cinereus). RESULTS: We found that the bacterial composition remained stable through the scat aging process, while the fungal composition did not. The absence of an increase in facultative anaerobes and the stable population of obligate anaerobic bacteria were likely due to our sampling from the inner portion of the scat. We report a cluster of fungal taxa that colonises scats after defecation which can dilute the genetic material from the autochthonous mycoflora and inhibit recovery. CONCLUSION: We emphasize the need to preserve the integrity of scat samples collected in the wild and combat the effects of time and provide strategies for doing so.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Phascolarctidae , Animales , Heces/microbiología , Animales Salvajes
8.
Biol Reprod ; 109(5): 644-653, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37593918

RESUMEN

The prostate of the koala (Phascolarctos cinereus), and of marsupials more generally, is the primary contributor of seminal fluid, yet comparatively little is known about its microanatomy or biochemistry. This study explored evidence of parenchymal segmentation of the koala prostate. The prostate of three sexually mature koalas were processed for histopathology, histochemistry (Masson's trichrome, Alcian Blue, periodic acid Schiff staining), and immunohistochemistry using basal (tumor protein 63, cytokeratin 14) and luminal (cytokeratin 8/18, prostate specific antigen, androgen receptor) markers. Results confirmed clear segmentation of the koala prostate into three zones, anterior, central, and posterior, characterized by differences in the proportion of glandular tissue, as well as the thickness of collagen fibers; there were also distinct differences in the secretions produced in each zone. Based on immunohistochemistry, the koala prostate showed evidence of both basal proliferative and luminal secretory cells. The ratio of cell types varied across the three segments, with the central segment housing the highest density of basal cells. Globular bodies produced in the anterior zone were shown to possess the same markers as those described for human prostasomes. This study is the first to comprehensively document the marsupial prostate in terms of microanatomy and corresponding immunohistochemistry. While further biochemical analysis, such as proteomics of each segment will better define the relative functions of each tissue, the data presented here are consistent with the hypothesis that the koala prostate potentially represents an example of an ontological stage in the evolutionary differentiation of male eutherian accessory glands.


Asunto(s)
Marsupiales , Phascolarctidae , Animales , Masculino , Humanos , Phascolarctidae/anatomía & histología , Próstata , Inmunohistoquímica
9.
Artículo en Inglés | MEDLINE | ID: mdl-36442826

RESUMEN

Orphaned koala joeys constitute a substantial number of wildlife rescues. Mortality is highly prevalent in rehabilitating joeys, with little knowledge about the causes of mortality. The hypothalamic-pituitary-adrenal axis plays a vital role in mediating stress by producing glucocorticoids (e.g. cortisol), however, no studies have quantified glucocorticoids in koala joeys. Traditional cortisol enzyme immuno-assay (e.g. R4866) are limited in supply and are process intensive, whereas, modern enzyme immuno-assay (EIA) kits (e.g. Arbor Assay cortisol kit) are available world-wide and provide rapid results. Biological validation is unsuitable to be performed in recuperating joeys due to ethical considerations, hence, we compared the results from biologically validated R4866 assay with the commercially available Arbor Assay cortisol kit. Thirty-four faecal samples were collected, processed and analysed for faecal cortisol metabolites (FCM) using both, R4866 assay and Arbor Assay kit. The joeys presented a suite of clinical conditions which provided the natural variation in stress response for comparing the assay sensitivity and range. The results indicated that there were no significant differences between the FCM values measured by both the assays. Furthermore, the Bland-Altman plot indicated a very strong agreement between the FCM concentrations measured by the two assays. This study is only a step towards recommending the routine use of commercial kit in clinical settings with basic resources, for rapid quantification of stress in koala patients. It is crucial for future studies to perform laboratory validation procedures to confirm the efficacy of the commercial kit before practical use for FCM monitoring in koalas.


Asunto(s)
Hidrocortisona , Phascolarctidae , Humanos , Animales , Hidrocortisona/metabolismo , Phascolarctidae/metabolismo , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Glucocorticoides/metabolismo , Heces/química
10.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35762858

RESUMEN

Koala retrovirus (KoRV) is unique amongst endogenous (inherited) retroviruses in that its incorporation to the host genome is still active, providing an opportunity to study what drives this fundamental process in vertebrate genome evolution. Animals in the southern part of the natural range of koalas were previously thought to be either virus-free or to have only exogenous variants of KoRV with low rates of KoRV-induced disease. In contrast, animals in the northern part of their range universally have both endogenous and exogenous KoRV with very high rates of KoRV-induced disease such as lymphoma. In this study we use a combination of sequencing technologies, Illumina RNA sequencing of 'southern' (south Australian) and 'northern' (SE QLD) koalas and CRISPR enrichment and nanopore sequencing of DNA of 'southern' (South Australian and Victorian animals) to retrieve full-length loci and intregration sites of KoRV variants. We demonstrate that koalas that tested negative to the KoRV pol gene qPCR, used to detect replication-competent KoRV, are not in fact KoRV-free but harbour defective, presumably endogenous, 'RecKoRV' variants that are not fixed between animals. This indicates that these populations have historically been exposed to KoRV and raises questions as to whether these variants have arisen by chance or whether they provide a protective effect from the infectious forms of KoRV. This latter explanation would offer the intriguing prospect of being able to monitor and selectively breed for disease resistance to protect the wild koala population from KoRV-induced disease.


Asunto(s)
Gammaretrovirus , Phascolarctidae , Infecciones por Retroviridae , Animales , Australia/epidemiología , Gammaretrovirus/genética , Retroviridae/genética , Infecciones por Retroviridae/veterinaria
11.
Mol Ecol ; 31(12): 3286-3303, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35510793

RESUMEN

Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome-wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as "endangered."


Asunto(s)
Infecciones por Chlamydia , Chlamydia , Marsupiales , Phascolarctidae , Animales , Australia , Chlamydia/fisiología , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/veterinaria , Progresión de la Enfermedad , Marsupiales/genética , Phascolarctidae/genética , Phascolarctidae/microbiología , Receptor Toll-Like 5
12.
Proteomics ; 21(19): e2100067, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411425

RESUMEN

The aims of this study were to investigate the proteome of koala spermatozoa and that of the prostatic bodies with which they interact during ejaculation. For this purpose, spermatozoa and prostatic bodies were fractionated from the semen of four male koalas and analysed by HPLC MS/MS. This strategy identified 744 sperm and 1297 prostatic body proteins, which were subsequently attributed to 482 and 776 unique gene products, respectively. Gene ontology curation of the sperm proteome revealed an abundance of proteins mapping to the canonical sirtuin and 14-3-3 signalling pathways. By contrast, protein ubiquitination and unfolded protein response pathways dominated the equivalent analysis of proteins uniquely identified in prostatic bodies. Koala sperm proteins featured an enrichment of those mapping to the functional categories of cellular compromise/inflammatory response, whilst those of the prostatic body revealed an over-representation of molecular chaperone and stress-related proteins. Cross-species comparisons demonstrated that the koala sperm proteome displays greater conservation with that of eutherians (human; 93%) as opposed to reptile (crocodile; 39%) and avian (rooster; 27%) spermatozoa. Together, this work contributes to our overall understanding of the core sperm proteome and has identified biomarkers that may contribute to the exceptional longevity of koala spermatozoa during ex vivo storage.


Asunto(s)
Phascolarctidae , Preservación de Semen , Animales , Pollos , Humanos , Masculino , Proteómica , Motilidad Espermática , Espermatozoides , Espectrometría de Masas en Tándem
13.
Curr Issues Mol Biol ; 43(1): 52-64, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946297

RESUMEN

Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host's immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host's survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.


Asunto(s)
Citocinas/inmunología , Phascolarctidae/virología , Infecciones por Retroviridae/prevención & control , Retroviridae/inmunología , Receptores Toll-Like/inmunología , Vacunación/métodos , Animales , Citocinas/metabolismo , Phascolarctidae/inmunología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Receptores Toll-Like/metabolismo
14.
Proc Biol Sci ; 288(1945): 20202244, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622136

RESUMEN

X chromosome inactivation (XCI) mediated by differential DNA methylation between sexes is an iconic example of epigenetic regulation. Although XCI is shared between eutherians and marsupials, the role of DNA methylation in marsupial XCI remains contested. Here, we examine genome-wide signatures of DNA methylation across fives tissues from a male and female koala (Phascolarctos cinereus), and present the first whole-genome, multi-tissue marsupial 'methylome atlas'. Using these novel data, we elucidate divergent versus common features of representative marsupial and eutherian DNA methylation. First, tissue-specific differential DNA methylation in koalas primarily occurs in gene bodies. Second, females show significant global reduction (hypomethylation) of X chromosome DNA methylation compared to males. We show that this pattern is also observed in eutherians. Third, on average, promoter DNA methylation shows little difference between male and female koala X chromosomes, a pattern distinct from that of eutherians. Fourth, the sex-specific DNA methylation landscape upstream of Rsx, the primary lncRNA associated with marsupial XCI, is consistent with the epigenetic regulation of female-specific (and presumably inactive X chromosome-specific) expression. Finally, we use the prominent female X chromosome hypomethylation and classify 98 previously unplaced scaffolds as X-linked, contributing an additional 14.6 Mb (21.5%) to genomic data annotated as the koala X chromosome. Our work demonstrates evolutionarily divergent pathways leading to functionally conserved patterns of XCI in two deep branches of mammals.


Asunto(s)
Phascolarctidae , Animales , Metilación de ADN , Epigénesis Genética , Epigenoma , Femenino , Masculino , Phascolarctidae/genética , Cromosoma X/genética
15.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188730

RESUMEN

Koala retrovirus (KoRV) is of an interest to virologists due to its currently active endogenization into the koala (Phascolarctos cinereus) genome. Although KoRV has frequently been isolated in wild and captive koala populations, its pathogenesis and transmission remain to be fully characterized, and most previous research has concentrated on adult koalas rather than on joeys. Here, we characterized KoRV isolates obtained from a deceased male joey and its parents (animals reared in a Japanese zoo) to investigate KoRV transmission mode and pathogenesis. We sequenced the KoRV long terminal repeat (LTR) and envelope genes isolated from the joey and its parents and found KoRV-A and KoRV-C in genomic DNA from both the parents and the joey. Notably, both parents were also positive for KoRV-B, whereas the joey was KoRV-B negative, further confirming that KoRV-B is an exogenous strain. The KoRV LTR sequence of the joey was considerably closer to that of its sire than its dam. For further characterization, total KoRV, KoRV-A, KoRV-B, and KoRV-C proviral loads were quantified in peripheral blood mononuclear cells from the parents and in blood samples from the joey. Total KoRV, KoRV-A, and KoRV-C proviral loads were also quantified for different tissues (bone, liver, kidney, lung, spleen, heart, and muscle) from the joey, revealing differences suggestive of a distinct tissue tropism (highest total KoRV proviral load in the spleen and lowest in bone). The amount of KoRV-C in the parents was less than that in the joey. Our findings contribute to an improved understanding of KoRV pathogenesis and transmission mode and highlight useful areas for future research.IMPORTANCE KoRV is unique among retroviruses in that one strain (KoRV-A) is undergoing endogenization, whereas the other main subtype (KoRV-B) and another subtype (KoRV-C) are reportedly exogenous strains. Its transmission and pathogenesis are of interest in the study of retroviruses and are crucial for any conservation strategy geared toward koala health. This study provides new evidence on the modes of KoRV transmission from parent koalas to their joey. We found vertical transmission of KoRV-A, confirming its endogenization, but with closer conservation between the joey and its sire than its dam (previous reports on joeys are rare but have postulated dam-to-joey vertical transmission). This is also the first report of a KoRV-B-negative joey from KoRV-B-positive parents, contrasting with the few previous reports of 100% transmission of KoRV-B from dams to joeys. Thus, the results in this study give some novel insights for the transmission mode of KoRV.


Asunto(s)
Evolución Molecular , Phascolarctidae/virología , Infecciones por Retroviridae , Retroviridae , Secuencias Repetidas Terminales , Animales , Femenino , Japón , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Masculino , Retroviridae/genética , Retroviridae/metabolismo , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/veterinaria
16.
Mol Ecol ; 30(11): 2626-2640, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33219558

RESUMEN

Most retroviral endogenization and host adaptation happened in the distant past, with the opportunity to study these processes as they occurred lost to time. An exception exists with the discovery that koala retrovirus (KoRV) has recently begun its endogenization into the koala (Phascolarctos cinereus) genome. What makes this opportunity remarkable is the fact that Northern Australian koalas appear to be undergoing endogenization with one KoRV subtype (KoRV-A), while all subtypes (KoRV-A-I) coexist exogenously, and Southern Australian koalas appear to carry all KoRV subtypes as an exogenous virus. To understand the distribution and relationship of all KoRV variants in koalas, the proviral KoRV envelope gene receptor binding domain was assessed across the koala's natural range. Examination of KoRV subtype-specific proviral copy numbers per cell found that KoRV-A proviral integration levels were consistent with endogenous incorporation in Northern Australia (southeast Queensland and northeast New South Wales) while revealing lower levels of KoRV-A proviral integration (suggestive of exogenous incorporation) in southern regions (southeast New South Wales and Victoria). Phylogeographical analysis indicated that several major KoRV-A variants were distributed uniformly across the country, while non-KoRV-A variants appeared to have undergone lineage diversification in geographically distinct regions. Further analysis of the major KoRV-A variants revealed a distinct shift in variant proportions in southeast New South Wales, suggesting this as the geographical region where KoRV-A transitions from being predominantly endogenous to exogenous in Australian koalas. Collectively, these findings advance both our understanding of KoRV in koalas and of retroviral endogenization and diversification in general.


Asunto(s)
Phascolarctidae , Infecciones por Retroviridae , Animales , Nueva Gales del Sur , Filogenia , Queensland , Retroviridae/genética , Victoria
17.
Ecol Appl ; 31(8): e02448, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34514663

RESUMEN

A challenge for natural area managers is to ensure that public expenditure on land restoration is cost effective, efficient and transparent but this is difficult to achieve in practice, especially when there are many possible projects across multiple years. Here we develop a "roadmap" for investment in land restoration. It explicitly considers space, time and their interaction, in relation to ecological outcomes and restoration costs (and their variation in time and space). Using integer linear programming optimization in a benefit-cost accounting framework, the roadmap incorporates: transitions between different stages of ecological recovery in a spatial mosaic of multiple ecosystem types; cost schedules associated with managing those transitions over time; time lags between beginning management and achieving outcomes; variations to constraints and goals associated with various factors including site accessibility, specific conservation priorities (such as threatened species or ecosystems); and background environmental trends. This approach enables land managers to: (1) forecast landscape-scale outcomes of management strategies over long timeframes; (2) address the question of how long it will take and how much it will cost to achieve specific outcomes; and (3) explore potential trade-offs in outcomes among alternative management strategies. We illustrate its application using a case study of forest restoration in Australia by a local government authority across a public conservation estate comprising 765 land units of varying size, totaling ˜13,000 ha, across five different floristic vegetation types, with an annual budget of ˜AU$5M, projected over a 50-yr timeframe. These simulations revealed a trade-off between management strategies that seek to increase either the total cover of native forest or the amount of high quality forest: quality-based strategies were favored in scenarios in which shorter term (20-30 yr) timeframes were chosen at the outset, but cover-based strategies were favored if longer time horizons were initially targeted. Projected outcomes were also strongly influenced by assumed background rates of vegetation decline or recovery. Many of the issues in this restoration roadmap are generalizable (even though specific outcomes and trade-offs are likely to vary among case studies), and the approach is both scalable and transferable to other regions and ecosystems.


Asunto(s)
Ecosistema , Administración Financiera , Australia , Conservación de los Recursos Naturales , Bosques
18.
Oecologia ; 196(3): 795-803, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34142232

RESUMEN

The diets of individual animals within populations can differ, but few studies determine whether this is due to fundamental differences in preferences or capacities to eat specific foods, or to external influences such as dominance hierarchies or spatial variation in food availability. The distinction is important because different drivers of dietary specialisation are likely to have different impacts on the way in which animal populations respond to, for example, habitat modification. We used a captive feeding study to investigate the mechanisms driving individual dietary specialisation in a population of wild koalas (Phascolarctos cinereus) in which individuals predominantly ate either Eucalyptus viminalis or Eucalyptus obliqua foliage. All six koalas that primarily ate E. viminalis in the wild avoided eating E. obliqua for more than 1 month in captivity. In contrast, all seven koalas that primarily ate E. obliqua could be maintained exclusively on this species in captivity, although they ate less from individual trees with higher foliar concentrations of unsubstituted B-ring flavanones (UBFs). Our results show that fundamental differences between individual animals allow some to exploit food resources that are less suitable for others. This could reduce competition for food, increase habitat carrying capacity, and is also likely to buffer the population against extinction in the face of habitat modification. The occurrence of fundamental individual specialisation within animal populations could also affect the perceived conservation value of different habitats, translocation or reintroduction success, and population dynamics. It should therefore be further investigated in other mammalian herbivore species.


Asunto(s)
Eucalyptus , Phascolarctidae , Animales , Dieta , Ecosistema , Árboles
19.
Proc Natl Acad Sci U S A ; 115(34): 8609-8614, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082403

RESUMEN

Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.


Asunto(s)
Retrovirus Endógenos/genética , Phascolarctidae/genética , Recombinación Genética , Animales , Femenino , Masculino , Nueva Gales del Sur
20.
Retrovirology ; 17(1): 34, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008414

RESUMEN

BACKGROUND: Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. RESULTS: All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. CONCLUSIONS: Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.


Asunto(s)
Gammaretrovirus/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , Animales Salvajes , Animales de Zoológico , Australia/epidemiología , Femenino , Gammaretrovirus/clasificación , Gammaretrovirus/aislamiento & purificación , Gammaretrovirus/patogenicidad , Variación Genética , Masculino , Epidemiología Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , ARN Viral/genética , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología , Estados Unidos/epidemiología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA