Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 92(6): 1182-1201, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29083105

RESUMEN

Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady-state maintenance and turnover of plant LDs, particularly in non-seed tissues, are relatively unknown. Previously, we showed that the LD-associated proteins (LDAPs) are a family of plant-specific, LD surface-associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two-hybrid library using the Arabidopsis LDAP3 isoform as 'bait' in an effort to identify other novel LD protein constituents. One of the candidate LDAP3-interacting proteins was Arabidopsis At5g16550, which is a plant-specific protein of unknown function that we termed LDIP (LDAP-interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α-helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T-DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gotas Lipídicas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Homeostasis , Biogénesis de Organelos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transporte de Proteínas , Semillas/genética , Semillas/metabolismo
2.
Front Plant Sci ; 12: 674031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367200

RESUMEN

Post-embryonic cells contain minute lipid bodies (LBs) that are transient, mobile, engage in organellar interactions, and target plasmodesmata (PD). While LBs can deliver γ-clade 1,3-ß-glucanases to PD, the nature of other cargo is elusive. To gain insight into the poorly understood role of LBs in meristems, we investigated their dynamics by microscopy, gene expression analyzes, and proteomics. In developing buds, meristems accumulated LBs, upregulated several LB-specific OLEOSIN genes and produced OLEOSINs. During bud maturation, the major gene OLE6 was strongly downregulated, OLEOSINs disappeared from bud extracts, whereas lipid biosynthesis genes were upregulated, and LBs were enlarged. Proteomic analyses of the LB fraction of dormant buds confirmed that OLEOSINs were no longer present. Instead, we identified the LB-associated proteins CALEOSIN (CLO1), Oil Body Lipase 1 (OBL1), Lipid Droplet Interacting Protein (LDIP), Lipid Droplet Associated Protein1a/b (LDAP1a/b) and LDAP3a/b, and crucial components of the OLEOSIN-deubiquitinating and degradation machinery, such as PUX10 and CDC48A. All mRFP-tagged LDAPs localized to LBs when transiently expressed in Nicotiana benthamiana. Together with gene expression analyzes, this suggests that during bud maturation, OLEOSINs were replaced by LDIP/LDAPs at enlarging LBs. The LB fraction contained the meristem-related actin7 (ACT7), "myosin XI tail-binding" RAB GTPase C2A, an LB/PD-associated γ-clade 1,3-ß-glucanase, and various organelle- and/or PD-localized proteins. The results are congruent with a model in which LBs, motorized by myosin XI-k/1/2, traffic on F-actin, transiently interact with other organelles, and deliver a diverse cargo to PD.

3.
Biochimie ; 169: 29-40, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31568826

RESUMEN

Lipid droplets (LDs) are cell organelles specialized in neutral lipid storage. Extendedly studied in seeds, LDs also accumulate in leaves during senescence or in response to abiotic stresses. However the mechanisms underlying their biogenesis remain relatively unknown. Here, we deciphered the distinct roles of two proteins during LD biogenesis: LD-associated protein 1 (AtLDAP1) and LDAP-interacting protein (AtLDIP). We demonstrated that AtLDIP overexpression favors the neo-formation of small LDs under growing conditions where LD accumulation is usually not observed. In addition, atldip knock-out mutant displayed fewer but larger LDs, confirming a role of AtLDIP in LD biogenesis. Interestingly, a synergistic effect of the overexpression of both AtLDIP and AtLDAP1 was observed, resulting in an increase of LD cluster occurrence and LD abundance within the clusters and the cells. AtLDIP overexpression has no significant impact on triacylglycerol and steryl ester accumulation but AtLDIP inactivation is associated with an increase of neutral lipid content, that is probably a consequence of the enlarged but less abundant LDs present in this line. Our localization study demonstrated that AtLDIP is localized at specific dotted sites within the LD in contrast to AtLDAP1 that covers the whole LD. In addition, AtLDIP sometimes localized away from the LD marker, but always associated with the ER network, suggesting a location at LD nascent sites within the ER. Taken together, our results suggested that AtLDIP promotes the formation of new LDs from ER localized TAG lenses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Asociadas a Gotas Lipídicas/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Nicotiana/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Proteínas Asociadas a Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semillas/genética , Semillas/metabolismo , Nicotiana/metabolismo , Triglicéridos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA