Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758159

RESUMEN

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Asunto(s)
Lesión Pulmonar Aguda , Proteína 2 Similar a la Angiopoyetina , Autofagia , Macrófagos Alveolares , Piroptosis , Receptores Inmunológicos , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Autofagia/genética , Técnicas de Silenciamiento del Gen , Lipopolisacáridos , Macrófagos Alveolares/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Piroptosis/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética
2.
Cancer Immunol Immunother ; 72(7): 2179-2193, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36853330

RESUMEN

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B2 (LILRB2) was reported to be an inhibitory molecule with suppressive functions. sEVs mediate communication between cancer cells and other cells. However, the existence of LILRB2 on sEVs in circulation and the function of sEVs-LILRB2 are still unknown. This study aims to investigate the role of LILRB2 in GBM and determine how LILRB2 in sEVs regulates tumor immunity. METHODS: LILRB2 expression in normal brain and GBM tissues was detected by immunohistochemistry, and the effect of LILRB2 on prognosis was evaluated in an orthotopic brain tumor model. Next, a subcutaneous tumor model was constructed to evaluate the function of pirb in vivo. The immune cells in the tumor sites and spleen were detected by immunofluorescence staining and flow cytometry. Then, the presence of pirb in sEVs was confirmed by WB. The percentage of immune cells after incubation with sEVs from GL261 (GL261-sEVs) or sEVs from GL261-pirb+ (GL261-sEVs-pirb) was detected by flow cytometry. Then, the effect of pirb on sEVs was evaluated by a tumor-killing assay and proliferation assay. Finally, subcutaneous tumor models were constructed to evaluate the function of pirb on sEVs. RESULTS: LILRB2 was overexpressed in human GBM tissue and was closely related to an immunosuppressive TME in GBM. Then, a protumor ability of LILRB2 was observed in subcutaneous tumor models, which was related to lower CD8 + T cells and higher MDSCs (myeloid-derived suppressor cells) in the tumor and spleen compared to those of the control group. Next, we found that pirb on sEVs (sEVs-pirb) inhibits the function of CD8 + T cells by promoting the formation and expansion of MDSCs. Furthermore, the protumor function of sEVs-pirb was demonstrated in subcutaneous tumor models. CONCLUSION: We discovered that LILRB2/pirb can be transmitted between GBM cells via sEVs and that pirb on sEVs induces the formation and expansion of MDSCs. The induced MDSCs facilitate the formation of an immunosuppressive TME.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Células Supresoras de Origen Mieloide , Humanos , Glioblastoma/patología , Receptores Inmunológicos/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo
3.
Cell Immunol ; 385: 104689, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780771

RESUMEN

To investigate the effect conferred by vaccination and previous infection against SARS-CoV-2 infection in molecular level, weighted gene co-expression network analysis was applied to screen vaccination, prior infection and Omicron infection-related gene modules in 46 Omicron outpatients and 8 controls, and CIBERSORT algorithm was used to infer the proportions of 22 subsets of immune cells. 15 modules were identified, where the brown module showed positive correlations with Omicron infection (r = 0.35, P = 0.01) and vaccination (r = 0.62, P = 1 × 10-6). Enrichment analysis revealed that LILRB2 was the unique gene shared by both phosphatase binding and MHC class I protein binding. Pathways including "B cell receptor signaling pathway" and "FcγR-mediated phagocytosis" were enriched in the vaccinated samples of the highly correlated LILRB2. LILRB2 was also identified as the second hub gene through PPI network, after LCP2. In conclusion, attenuated LILRB2 transcription in PBMC might highlight a novel target in overcoming immune evasion and improving vaccination strategies.


Asunto(s)
COVID-19 , Vacunas de ARNm , Humanos , COVID-19/genética , COVID-19/prevención & control , Redes Reguladoras de Genes , Leucocitos Mononucleares , SARS-CoV-2 , Vacunación , Vacunas de ARNm/inmunología
4.
Biochem Biophys Res Commun ; 617(Pt 1): 42-47, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35675737

RESUMEN

Hematopoietic stem cell (HSC) transplantation represents an important curative therapy for numerous hematological and immune diseases. Many efforts have been applied to achieve attainable ex vivo HSC expansion. We previously showed that angiopoietin-like proteins 2 (Angptl2) binds and activates the immune inhibitory receptor human leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) to support the expansion of HSC. However, soluble Angptl2 is unstable and the downstream signaling would be attenuated by ligand-binding triggered receptor endocytosis, compromising the potential of Angptl2 to expand HSCs. We proposed that membrane anchored Angptl2 will overcome these limitations. In this study, we constructed the C-terminal and N-terminal anchored membrane Angptl2 (Cm-Angptl2 and Nm-Angptl2) by adding a transmembrane domain at the C-terminal or an anchor sequence at the N-terminal respectively. Both forms of Angptl2 showed efficient expression on the surface of feeder cells. Nm-Angptl2, but not Cm-Angptl2, induces a potent activation of LILRB2 reporter, indicating the fibronectin (FBN) domain at the C-terminus of Angptl2 is essential to stimulate LILRB2 signaling. Compared to soluble Angptl2, Nm-Angptl2 displays higher activities to activate LILRB2 reporter, and to promote the expansion of mouse HSCs as determined by transplantation and limiting dilution assay. Our study revealed the importance of FBN domain for Angptl2 to activate LILRB2 and demonstrated that Nm-Angptl2 have enhanced activities than the soluble protein in LILRB2 activation and HSC expansion, providing a strategy to explore the mode of ligand induced receptor signaling, and an optimized approach to expand HSCs ex vivo.


Asunto(s)
Proteína 2 Similar a la Angiopoyetina , Trasplante de Células Madre Hematopoyéticas , Proteínas Similares a la Angiopoyetina/metabolismo , Angiopoyetinas/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Ligandos , Ratones , Receptores Inmunológicos/metabolismo
5.
Mol Cell Neurosci ; 114: 103630, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029694

RESUMEN

LilrB2 is an Aß receptor with high affinity, which not only contributes to memory deficits but also mediates the loss of synaptic plasticity. Thus, Aß-LilrB2 interaction inhibitors (ALIs) might be a potential therapeutic strategy for Alzheimer's disease. In this study, an ELISA-based interaction assay was established as a novel approach to identify ALIs and was used to screen 110 compounds from a compound library. Among the 110 compounds, four compounds presented IC50 values lower than the positive control flusipirilene. The two phenyl-1,3,5-triazine derivatives (compound 103 and 104) displayed inhibitory activities with the IC50 of 0.23 µM and 0.05 µM respectively. The neuroprotection activities of the hit compounds were evaluated in SH-SY5Y cell line. Compound 104 presented good safety and neuroprotective effects against Aß. Further study of its effect on the downstream pathway of Aß indicated that compound 104 was able to reverse the Aß induced cofilin dephosphorylation, tau hyperphosphorylation and neurite outgrowth inhibition. The docking study showed that fluspirilene and compound 104 were favorably positioned into the Ben 3 and 4 binding pockets via their aromatic ring, which was similar to that reported for Aß. Based on these facts, compound 104 can be identified as a potential ALI which might be of therapeutic importance for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Glicoproteínas de Membrana/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neuronas/metabolismo
6.
Biochem Biophys Res Commun ; 548: 167-173, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33647792

RESUMEN

Plasmodium falciparum causes the most severe form of malaria. Acquired immunity against P. falciparum provides insufficient protection even after repeated infections. Therefore, P. falciparum parasites might exploit inhibitory receptors for immune evasion. P. falciparum RIFINs are products of a multigene family consisting of 150-200 genes. Previously, we demonstrated that some RIFINs downregulate the immune response through the leukocyte immunoglobulin-like receptor (LILR) family inhibitory receptor, LILRB1, and leukocyte-associated immunoglobulin-like receptor 1, LAIR1. In this study, we further analyzed the expression of inhibitory receptor ligands on P. falciparum-infected erythrocytes and found that P. falciparum-infected erythrocytes expressed ligands for another LILR family inhibitory receptor, LILRB2, that recognizes HLA class I molecules as a host ligand. Furthermore, we identified that a specific RIFIN was a ligand for LILRB2 by using a newly developed RIFIN expression library. In addition, the domain 3 of LILRB2 was involved in RIFIN binding, whereas the domains 1 and 2 of LILRB2 were involved in the binding to HLA class I molecules. These results suggest that inhibitory receptor LILRB2 is also targeted by RIFIN for immune evasion of P. falciparum similar to LILRB1 and LAIR1.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Eritrocitos/parasitología , Femenino , Células HEK293 , Humanos , Ligandos , Malaria Falciparum/parasitología , Glicoproteínas de Membrana/química , Ratones Endogámicos BALB C , Unión Proteica , Dominios Proteicos , Receptores Inmunológicos/química
7.
J Biol Chem ; 294(15): 6042-6053, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30787106

RESUMEN

Oligomeric assemblies of amyloid-ß (Aß) peptide (Aßo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aß receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aß species, including Aßo from AD brains obtained by autopsy, we directly compared the Aß-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aß receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aß. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aßo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aßo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aß receptors under controlled conditions and highlight the prominence of PrPC as an Aß-binding site.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Nogo 1/metabolismo , Proteínas PrPC/metabolismo , Receptores Inmunológicos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Receptor Nogo 1/genética , Proteínas PrPC/genética , Receptores Inmunológicos/genética
8.
Parasite Immunol ; 42(4): e12702, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020650

RESUMEN

AIMS: Schistosomiasis and malaria are endemic in sub-Saharan Africa where Schistosoma haematobium (Sh) and Plasmodium falciparum (Pf) coinfections are thus frequent. We explored the effect of Sh infection on antibody responses directed to Pf merozoite antigens and on malaria susceptibility in Beninese children. METHODS AND RESULTS: A total of 268 children were followed during a malaria transmission season. Detection of Pf infection was performed by microscopy and rapid diagnostic tests. Sh infection was determined in urine by microscopy. Antimalarial antibody, cytokine and HLA-G concentrations were quantified by ELISA. The expression of HLA-G receptors by immune cells was assessed by flow cytometry. Children infected by Sh had higher concentrations of IgG1 directed to MSP3 and GLURPR0 , IgG2 directed to GLURPR0 and IgG3 directed to MSP3, GLURPR0 and GLURPR2 and have lower Pf densities than those uninfected by Sh. No difference in cytokine and HLA-G concentrations was observed between Sh egg carriers and non-carriers. CONCLUSION: Schistosoma haematobium modulates host immune responses directed to Pf antigens. The absence of immune downregulation usually observed during helminth infections is surprising in our study. We hypothesize that the stage of Sh development could partly explain the immune pathways leading to increased antibody levels that favour better control of Pf parasitemia.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antimaláricos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Schistosoma haematobium/inmunología , Esquistosomiasis Urinaria/inmunología , Animales , Antígenos de Protozoos/inmunología , Antimaláricos/uso terapéutico , Benin , Niño , Preescolar , Coinfección/parasitología , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Malaria Falciparum/complicaciones , Masculino , Esquistosomiasis Urinaria/complicaciones , Esquistosomiasis Urinaria/tratamiento farmacológico
9.
Biochem Biophys Res Commun ; 506(1): 243-250, 2018 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-30343889

RESUMEN

Although leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) is known as an immune inhibitory receptor to suppress the immune system, its function in cancer development remains largely unknown. Herein, we provide the first body of information showing that LILRB2 is highly expressed in the endometrial cancer. More importantly, the expression levels of LILRB2 are inversely correlated with the overall patients' survival. Knockdown of LILRB2 results in a dramatic decrease in the proliferation, colony formation and migration in several endometrial cancer cell lines in vitro. Furthermore, in vivo xenograft experiments reveal a notable reduction of tumor cell growth. Mechanistically, LILRB2 enhances the SHP2/CaMK1/CREB signaling pathways to support the expansion and migration of the endometrial cancer cells. These findings unravel an unexpected role of LILRB2 in solid cancers except for its canonical role in immune surveillance, which may serve as a potential endometrial stem cell marker and may benefit the development of novel strategies for the treatment of endometrial cancers.


Asunto(s)
Neoplasias Endometriales/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Endometriales/química , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Vigilancia Inmunológica , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/deficiencia , Ratones , Receptores Inmunológicos/análisis , Receptores Inmunológicos/deficiencia , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 110(44): 17957-62, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24133137

RESUMEN

Neutrophils play a major role in inflammatory responses and immune defense against pathogens. Even though expression of inhibitory receptors has been reported on neutrophils, their role remains poorly defined. Here we show that primary human neutrophils expressed immunoglobulin-like transcript 4 (ILT4) inhibitory receptor and that this expression was induced during differentiation of the myelomonoblast PLB-985 cell line into "neutrophil-like" cells. Functional assays indicated that human leukocyte antigen G, the preferred ligand of ILT4, inhibited the phagocytic function of neutrophils. ILT4 engagement also impaired reactive oxygen species production induced through CD32a and both receptors were found colocalized into neutrophil lipid rafts. Moreover, neutrophil degranulation induced through inflammatory stimuli increased ILT4 expression as a result of the rapid translocation of an intracellular pool to the cell surface. Consequently to this ILT4 up-regulation, the human leukocyte antigen G-mediated inhibition of neutrophil phagocytic function was enhanced. Finally, we found that ILT4 up-regulation induced on healthy donor neutrophils following stimulation was impaired in presence of plasma from patients with sepsis. Similarly, ILT4 up-regulation was inhibited in neutrophils from septic patients. Altogether, our results reveal a unique mechanism of regulation of neutrophil functions through ILT4 and its exocytosis that may have implications in inflammatory disorders.


Asunto(s)
Exocitosis/inmunología , Regulación de la Expresión Génica/inmunología , Glicoproteínas de Membrana/inmunología , Neutrófilos/inmunología , Receptores Inmunológicos/inmunología , Estallido Respiratorio/inmunología , Apoptosis , Citometría de Flujo , Humanos , Microscopía Confocal , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , Sepsis/inmunología , Sepsis/metabolismo
11.
Adv Sci (Weinh) ; : e2308968, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207058

RESUMEN

Pathological myopia (PM) is one of the leading causes of blindness, especially in Asia. To identify the genetic risk factors of PM, a two-stage genome-wide association study (GWAS) and replication analysis in East Asian populations is conducted. The analysis identified LILRB2 in 19q13.42 as a new candidate locus for PM. The increased protein expression of LILRB2/Pirb (mouse orthologous protein) in PM patients and myopia mouse models is validated. It is further revealed that the increase in LILRB2/Pirb promoted fatty acid synthesis and lipid accumulation, leading to the destruction of choroidal function and the development of PM. This study revealed the association between LILRB2 and PM, uncovering the molecular mechanism of lipid metabolism disorders leading to the pathogenesis of PM due to LILRB2 upregulation.

12.
Cancer Lett ; 593: 216930, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705566

RESUMEN

Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Senescencia Celular , Neoplasias Pulmonares , Tolerancia a Radiación , Receptores Inmunológicos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Senescencia Celular/efectos de la radiación , Tolerancia a Radiación/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Animales , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Ratones , Transducción de Señal , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Fenotipo Secretor Asociado a la Senescencia/genética , Células A549 , Femenino
13.
Biosci Rep ; 44(2)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38299364

RESUMEN

Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.


Asunto(s)
Envejecimiento , Encéfalo , Humanos , Ligandos , Inflamación , Cognición
14.
Cells ; 12(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831297

RESUMEN

Vitiligo is the most frequent cause of depigmentation worldwide. Genetic association studies have discovered about 50 loci associated with disease, many with immunological functions. Among them is HLA-G, which modulates immunity by interacting with specific inhibitory receptors, mainly LILRB1 and LILRB2. Here we investigated the LILRB1 and LILRB2 association with vitiligo risk and evaluated the possible role of interactions between HLA-G and its receptors in this pathogenesis. We tested the association of the polymorphisms of HLA-G, LILRB1, and LILRB2 with vitiligo using logistic regression along with adjustment by ancestry. Further, methods based on the multifactor dimensionality reduction (MDR) approach (MDR v.3.0.2, GMDR v.0.9, and MB-MDR) were used to detect potential epistatic interactions between polymorphisms from the three genes. An interaction involving rs9380142 and rs2114511 polymorphisms was identified by all methods used. The polymorphism rs9380142 is an HLA-G 3'UTR variant (+3187) with a well-established role in mRNA stability. The polymorphism rs2114511 is located in the exonic region of LILRB1. Although no association involving this SNP has been reported, ChIP-Seq experiments have identified this position as an EBF1 binding site. These results highlight the role of an epistatic interaction between HLA-G and LILRB1 in vitiligo pathogenesis.


Asunto(s)
Antígenos CD , Antígenos HLA-G , Receptor Leucocitario Tipo Inmunoglobulina B1 , Vitíligo , Humanos , Antígenos HLA-G/genética , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Polimorfismo Genético , Receptores Inmunológicos/genética , Vitíligo/metabolismo
15.
Hum Immunol ; 84(8): 374-383, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36710086

RESUMEN

We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with ß2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.


Asunto(s)
Antígenos HLA-G , Proteínas de Punto de Control Inmunitario , Humanos , Antígenos HLA-G/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Proteínas de Punto de Control Inmunitario/genética , Genes MHC Clase I , Isoformas de Proteínas/genética
16.
J Adv Res ; 47: 41-56, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36031141

RESUMEN

INTRODUCTION: High calorie intake is known to induce nonalcoholic fatty liver disease (NAFLD) by promoting chronic inflammation. However, the mechanisms are poorly understood. OBJECTIVES: This study examined the roles of ANGPTL8 in the regulation of NAFLD-associated liver fibrosis progression induced by high fat diet (HFD)-mediated inflammation. METHODS: The ANGPTL8 concentration was measured in serum samples from liver cancer and liver cirrhosis patients. ANGPTL8 knockout(KO) mice were used to induce disease models (HFD, HFHC and CCL4) followed by pathological staining, western blot and immunohistochemistry. Hydrodynamic injection of an adeno-associated virus 8 (AAV8) was used to establish a model for restoring ANGPTL8 expression specifically in ANGPTL8 KO mice livers. RNA-sequencing, protein array, Co-IP, etc. were used to study ANGPTL8's mechanisms in regulating liver fibrosis progression, and drug screening was used to identify an effective inhibitor of ANGPTL8 expression. RESULTS: ANGPTL8 level is associated with liver fibrogenesis in both cirrhosis and hepatocellular carcinoma patients. Mouse studies demonstrated that ANGPTL8 deficiency suppresses HFD-stimulated inflammatory activity, hepatic steatosis and liver fibrosis. The AAV-mediated restoration of liver ANGPTL8 expression indicated that liver-derived ANGPTL8 accelerates HFD-induced liver fibrosis. Liver-derived ANGPTL8, as a proinflammatory factor, activates HSCs (hepatic stellate cells) by interacting with the LILRB2 receptor to induce ERK signaling and increase the expression of genes that promote liver fibrosis. The FDA-approved anti-diabetic drug metformin, an ANGPTL8 inhibitor, inhibited HFD-induced liver fibrosis in vivo. CONCLUSIONS: Our data support that ANGPTL8 is a proinflammatory factor that accelerates NAFLD-associated liver fibrosis induced by HFD. The serum ANGPTL8 level may be a potential and specific diagnostic marker for liver fibrosis, and targeting ANGPTL8 holds great promise for developing innovative therapies to treat NAFLD-associated liver fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Dieta Alta en Grasa/efectos adversos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Inflamación , Transducción de Señal , Proteína 8 Similar a la Angiopoyetina
17.
HLA ; 100(4): 325-348, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35754199

RESUMEN

Leukocyte immunoglobulin (Ig)-like receptors (LILR) LILRB1 and LILRB2 may play a pivotal role in maintaining self-tolerance and modulating the immune response through interaction with classical and nonclassical HLA molecules. Although both diversity and natural selection patterns over HLA genes have been extensively evaluated, little information is available concerning the genetic diversity and selection signatures on the LILRB1/2 regions. Therefore, we identified the LILRB1/2 genetic diversity using next-generation sequencing in a population sample from São Paulo State, Brazil. We identified 58 LILRB1 Single Nucleotide Variants (SNVs), which gave rise to 13 haplotypes, and 41 LILRB2 SNVs arranged into 11 haplotypes. Although we may not exclude as a possible effect of population structure, we found evidence of either positive or purifying selection on LILRB1/2 coding regions. Some residues in both proteins showed to be under the effect of positive selection, suggesting that amino acid replacements in these proteins resulted in beneficial functional changes. Finally, we have revealed that allelic variation (six and five amino acid exchanges in LILRB1 and LILRB2, respectively) affects the structure and/or stability of both molecules. Nonetheless, LILRB2 has shown higher average stability, with no D1/D2 residue affecting protein structure. Overall, our findings demonstrate that LILRB1 and LILRB2 are as polymorphic as HLA class Ib genes and provide strong evidence supporting the directional selection regime hypothesis.


Asunto(s)
Antígenos CD , Receptor Leucocitario Tipo Inmunoglobulina B1 , Glicoproteínas de Membrana , Receptores Inmunológicos , Alelos , Aminoácidos , Antígenos CD/genética , Brasil , Variación Genética , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
18.
J Mol Model ; 28(10): 322, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125588

RESUMEN

Leukocyte immunoglobulin-like receptor B2 (LilrB2) is one of discovered cell surface ß-amyloid (Aß) receptors and taken as a promising therapeutic target for the treatment of Alzheimer's disease (AD). Aß42 oligomer rather than monomer is toxic to neuronal cells and can directly bind to LilrB2, resulting in synaptic loss and cognitive impairment in the development of AD. Therefore, uncovering the mechanism of interaction between Aß42 oligomer and LilrB2 becomes the first step to obtain a clear drug target and specific binding sites. Herein, a tetracoordinated mechanism for the Aß oligomer-LilrB2 binding was first put forward by employing Aß42 dimer mimic-antiparallel copies of Aß42 core fragment 16KLVFFA21, to bind LilrB2 as models, in which four key residues (F5/F6/L12/F14) in the Aß42 mimic are bound strongly with LilrB2 residue(s) or accommodated by four hydrophobic cavities in LilrB2 to generate a stable complex. Bi-dentate binding, however, cannot keep the complex Aß42 mimic-LilrB2 stable. The inhibitor fluspirilene can disturb the binding of four key residues of Aß42 to LilrB2, justifying the tetracoordinated zipper mechanism on the other hand.


Asunto(s)
Enfermedad de Alzheimer , Fluspirileno , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Humanos , Inmunoglobulinas , Glicoproteínas de Membrana , Receptores Inmunológicos
19.
Mol Neurodegener ; 17(1): 44, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717259

RESUMEN

BACKGROUND: Microglia plays crucial roles in Alzheimer's disease (AD) development. Triggering receptor expressed on myeloid cells 2 (TREM2) in association with DAP12 mediates signaling affecting microglia function. Here we study the negative regulation of TREM2 functions by leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2), an inhibitory receptor bearing ITIM motifs. METHODS: To specifically interrogate LILRB2-ligand (oAß and PS) interactions and microglia functions, we generated potent antagonistic LILRB2 antibodies with sub-nanomolar level activities. The biological effects of LILRB2 antagonist antibody (Ab29) were studied in human induced pluripotent stem cell (iPSC)-derived microglia (hMGLs) for migration, oAß phagocytosis, and upregulation of inflammatory cytokines. Effects of the LILRB2 antagonist antibody on microglial responses to amyloid plaques were further studied in vivo using stereotaxic grafted microglia in 5XFAD mice. RESULTS: We confirmed the expression of both LILRB2 and TREM2 in human brain microglia using immunofluorescence. Upon co-ligation of the LILRB2 and TREM2 by shared ligands oAß or PS, TREM2 signaling was significantly inhibited. We identified a monoclonal antibody (Ab29) that blocks LILRB2/ligand interactions and prevents TREM2 signaling inhibition mediated by LILRB2. Further, Ab29 enhanced microglia phagocytosis, TREM2 signaling, migration, and cytokine responses to the oAß-lipoprotein complex in hMGL and microglia cell line HMC3. In vivo studies showed significantly enhanced clustering of microglia around plaques with a prominent increase in microglial amyloid plaque phagocytosis when 5XFAD mice were treated with Ab29. CONCLUSIONS: This study revealed for the first time the molecular mechanisms of LILRB2-mediated inhibition of TREM2 signaling in microglia and demonstrated a novel approach of enhancing TREM2-mediated microglia functions by blocking LILRB2-ligand interactions. Translationally, a LILRB2 antagonist antibody completely rescued the inhibition of TREM2 signaling by LILRB2, suggesting a novel therapeutic strategy for improving microglial functions.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Inmunológicos/metabolismo
20.
Genes (Basel) ; 13(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35741860

RESUMEN

Autism spectrum disorder (ASD) affects more than 1% of children, and there is no viable pharmacotherapeutic agent to treat the core symptoms of ASD. Studies have shown that children with ASD show changes in their levels of immune response molecules. Our previous studies have shown that ASD is more common in children with folate receptor autoantibodies. We also found that children with ASD have abnormal gut immune function, which was characterized by a significant increase in the content of immunoglobulin A and an increase in gut-microbiota-associated epitope diversity. These studies suggest that the immune mechanism plays an important role in the occurrence of ASD. The present study aims to systematically assess gene mutations in immune mediators in patients with ASD. We collected genetic samples from 72 children with ASD (2−12 years old) and 107 healthy controls without ASD (20−78 years old). We used our previously-designed immune gene panel, which can capture cytokine and receptor genes, the coding regions of MHC genes, and genes of innate immunity. Target region sequencing (500×) and bioinformatics analytical methods were used to identify variants in immune response genes associated with patients with ASD. A total of 4 rare variants were found to be associated with ASD, including HLA-B: p.A93G, HLA-DQB1: p.S229N, LILRB2: p.R322H, and LILRB2: c.956-4C>T. These variants were present in 44.44% (32/72) of the ASD patients and were detected in 3.74% (4/107) of the healthy controls. We expect these genetic variants will serve as new targets for the clinical genetic assessment of ASD, and our findings suggest that immune abnormalities in children with ASD may have a genetic basis.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Adulto , Anciano , Trastorno del Espectro Autista/genética , Niño , Preescolar , Citocinas , Humanos , Inmunidad , Factores Inmunológicos , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA