Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(6): 1197-1208.e12, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886386

RESUMEN

Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Dineínas/química , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
2.
Annu Rev Cell Dev Biol ; 31: 83-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26436706

RESUMEN

Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Meiosis/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Orgánulos/metabolismo , Orgánulos/fisiología
3.
Proc Natl Acad Sci U S A ; 120(1): e2214143120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574684

RESUMEN

Due to its multifaceted impact in various applications, icing and ice dendrite growth has been the focus of numerous studies in the past. Dendrites on wetting (hydrophilic) and nonwetting (hydrophobic) surfaces are sharp, pointy, branching, and hairy. Here, we show a unique dendrite morphology on state-of-the-art micro/nanostructured oil-impregnated surfaces, which are commonly referred to as slippery liquid-infused porous surfaces or liquid-infused surfaces. Unlike the dendrites on traditional textured hydrophilic and hydrophobic surfaces, the dendrites on oil-impregnated surfaces are thick and lumpy without pattern. Our experiments show that the unique ice dendrite morphology on lubricant-infused surfaces is due to oil wicking into the porous dendritic network because of the capillary pressure imbalance between the surface texture and the dendrites. We characterized the shape complexity of the ice dendrites using fractal analysis. Experiments show that ice dendrites on textured oil-impregnated surfaces have lower fractal dimensions than those on traditional lotus leaf-inspired air-filled porous structures. Furthermore, we developed a regime map that can be used as a design guideline for micro/nanostructured oil-impregnated surfaces by capturing the complex effects of oil chemistry, oil viscosity, and wetting ridge volume on dendrite growth and morphology. The insights gained from this work inform strategies to reduce lubricant depletion, a major bottleneck for the transition of micro/nanostructured oil-impregnated surfaces from bench-top laboratory prototypes to industrial use. This work will assist the development of next-generation depletion-resistant lubricant-infused ice-repellent surfaces.


Asunto(s)
Excipientes , Hielo , Alimentos , Lubricantes , Dendritas
4.
Proc Natl Acad Sci U S A ; 120(31): e2301260120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487097

RESUMEN

Lithium-sulfur (Li-S) batteries with high energy density and low cost are promising for next-generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self-discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li-S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single-Solvent, Single-Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li-S batteries. Among the designed electrolytes, Li-S cells using fluorinated-1,2-diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 °C, fluorinated-1,4-dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether-based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.

5.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36274587

RESUMEN

Mitotic cell division requires that kinetochores form microtubule attachments that can segregate chromosomes and control mitotic progression via the spindle assembly checkpoint. During prometaphase, kinetochores shed a domain called the fibrous corona as microtubule attachments form. This shedding is mediated, in part, by the minus-end directed motor dynein, which 'strips' cargoes along K-fibre microtubules. Despite its essentiality, little is known about how dynein stripping is regulated and how it responds to attachment maturation. Lis1 (also known as PAFAH1B1) is a conserved dynein regulator that is mutated in the neurodevelopmental disease lissencephaly. Here, we have combined loss-of-function studies, high-resolution imaging and separation-of-function mutants to define how Lis1 contributes to dynein-mediated corona stripping in HeLa cells. Cells depleted of Lis1 fail to disassemble the corona and show a delay in metaphase as a result of persistent checkpoint activation. Furthermore, we find that although kinetochore-tethered Lis1-dynein is required for error-free microtubule attachment, the contribution of Lis1 to corona disassembly can be mediated by a cytoplasmic pool. These findings support the idea that Lis1 drives dynein function at kinetochores to ensure corona disassembly and prevent chromosome mis-segregation.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Dineínas , Cinetocoros , Proteínas Asociadas a Microtúbulos , Humanos , Dineínas/metabolismo , Células HeLa , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo
6.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861883

RESUMEN

The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.


Asunto(s)
Dineínas , Cinetocoros , Proteínas Asociadas a Microtúbulos/genética , Dineínas Citoplasmáticas/genética , Axones
7.
Trends Biochem Sci ; 45(5): 440-453, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311337

RESUMEN

Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Imagen Individual de Molécula
8.
J Biol Chem ; 299(6): 104735, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086789

RESUMEN

Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.


Asunto(s)
Proteínas Portadoras , Complejo Dinactina , Dineínas , Proteínas Asociadas a Microtúbulos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Citoesqueleto/metabolismo , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
9.
Small ; : e2401587, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855999

RESUMEN

Heterostructured materials commonly consist of bifunctions due to the different ingredients. For host material in the sulfur cathode of lithium-sulfur (Li-S) batteries, the chemical adsorption and catalytic activity for lithium polysulfides (LiPS) are important. This work obtains a Ni5P2-Ni nanoparticle (Ni5P2-NiNPs) heterostructure through a confined self-reduction method followed by an in situ phosphorization process using Al/Ni-MOF as precursors. The Ni5P2-Ni heterostructure not only has strong chemical adsorption, but also can effectively catalyze LiPS conversion. Furthermore, the synthetic route can keep Ni5P2-NiNPs inside of the nanocomposites, which have structural stability, high conductivity, and efficient adsorption/catalysis in LiPS conversion. These advantages make the assembled Li-S battery deliver a reversible specific capacity of 619.7 mAh g- 1 at 0.5 C after 200 cycles. The in situ ultraviolet-visible technique proves the catalytic effect of Ni5P2-Ni heterostructure on LiPS conversion during the discharge process.

10.
Small ; 20(1): e2304618, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37635111

RESUMEN

The development of lithium-sulfur (Li-S) batteries is very promising and yet faces the issues of hindered polysulfides conversion and Li dendrite growth. Different from using different materials strategies to overcome these two types of problems, here multifunctional catalytic hierarchical interfaces of Ni12 P5 -Ni2 P porous nanosheets formed by Ni2 P partially in situ converted from Ni12 P5 are proposed. The unique electronic structure in the interface endows Ni12 P5 -Ni2 P effective electrocatalysis effect toward both sulfides' reduction and oxidation through reducing Gibbs free energies, indicating a bidirectional conversion acceleration. Importantly, Ni12 P5 -Ni2 P porous nanosheets with hierarchical interfaces also reduced the Li nucleation energy barrier, and a dendrite-free Li deposition is realized during the overall Li deposition and stripping steps. To this end, Ni12 P5 -Ni2 P decorated carbon nanotube/S cathode showing a high capacity of over 1500 mAh g-1 , and a high rate capability of 8 C. Moreover, the coin full cell delivered a high capacity of 1345 mAh g-1 at 0.2 C and the pouch full cell delivered a high capacity of 1114 mAh g-1 at 0.2 C with high electrochemical stability during 180° bending. This work inspires the exploration of hierarchical structures of 2D materials with catalytically active interfaces to improve the electrochemistry of Li-S full battery.

11.
Small ; 20(1): e2304938, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649198

RESUMEN

Materials with various single-transition metal atoms dispersed in nitrogenated carbons (M─N─C, M = Fe, Co, and Ni) are synthesized as cathodes to investigate the electrocatalytic behaviors focusing on their enhancement mechanism for performance of Li-S batteries. Results indicate that the order of both electrocatalytic activity and rate capacity for the M─N─C catalysts is Co > Ni > Fe, and the Co─N─C delivers the highest capacity of 1100 mAh g-1 at 1 C and longtime stability at a decay rate of 0.05% per cycle for 1000 cycles, demonstrating excellent battery performance. Theoretical calculations for the first time reveal that M─N─N─C catalysts enable direct conversion of Li2 S6 to Li2 S rather than Li2 S4 to Li2 S by stronger adsorption with Li2 S6 , which also has an order of Co > Ni > Fe. And Co─N─C has the strongest adsorption energy, not only rendering the highest electrocatalytic activity, but also depressing the polysulfides' dissolution into electrolyte for the longest cycle life. This work offers an avenue to design the next generation of highly efficient sulfur cathodes for high-performance Li-S batteries, while shedding light on the fundamental insight of single metal atomic catalytic effects on Li-S batteries.

12.
Small ; 20(12): e2306928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37953415

RESUMEN

The development of lithium-sulfur batteries is seriously hindered by the shuttle effect of lithium polysulfides (LiPSs) and the low electrical conductivity of sulfur. To solve these problems, efficient catalysts can be used to improve the conversion rate of LiPSs and the conductivity of sulfur cathode. Herein, annealed melamine foam supported MoSe2 (NCF@MoSe2) is used as interlayer and the MoSe2/MoP heterojunction obtained by phosphating MoSe2 is further used as the catalyst material for metal fusion with a sulfur element. The interlayer can not only improve the electrical conductivity and effectively adsorb and catalyze LiPSs, but more importantly, the MoSe2/MoP heterojunction can also effectively adsorb and catalyze LiPSs, so that the batteries have a dual inhibition shuttling effect strategy. Furthermore, the rapid anchor-diffusion transition of LiPSs, and the suppression of shuttling effects by catalyst materials are elucidated using theoretical calculations and in situ Raman spectroscopy. The two-step catalytic strategy exhibits a high reversibility of 983 mAh g-1 after 200 cycles at 0.5 C and a high-rate capacity of 889 mAh g-1 at 5 C. This work provides a feasible solution for the rational design of interlayer and heterojunction materials and is also conducive to the development of more advanced Li-S batteries.

13.
Small ; 20(16): e2308603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009482

RESUMEN

The shuttle effect of lithium polysulfides (LiPSs) severely hinders the development and commercialization of lithium-sulfur batteries, and the design of high-conductive carbon fiber-host material has become a key solution to suppress the shuttle effect. In this work, a unique Co/CoN-carbon nanocages@TiO2-carbon nanotubes structure (NC@TiO2-CNTs) is constructed using an electrospinning and nitriding process. Lithium-sulfur batteries using NC@TiO2-CNTs as cathode host materials exhibit high sulfur utilization (1527 mAh g-1 at 0.2 C) and can still maintain a discharge capacity of 663 mAh g-1 at a high current density of 5 C, and the capacity loss is only 0.056% per cycle during 500 cycles at 1 C. It is worth noting that even under extreme conditions (sulfur-loading = 90%, surface-loading = 5.0 mg cm-2 (S), and E/S = 6.63 µL mg-1), the lithium-sulfur batteries can still provide a reversible capacity of 4 mAh cm-2. Throughdensity functional theory calculations, it has been found that the Co/CoN heterostructures can adsorb and catalyze LiPSs conversion effectively. Simultaneously, the TiO2 can adsorb LiPSs and transfer Li+ selectively, achieving dual confinement for the shuttle effect of LiPSs (nanocages and nanotubes). The new findings provide a new performance enhancement strategy for the commercialization of lithium-sulfur batteries.

14.
Small ; 20(34): e2400068, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593293

RESUMEN

Lithium-sulfur (Li-S) batteries with high theoretical energy density (2600 Wh kg-1) are considered to be one of the most promising secondary batteries. However, the practical application of Li-S batteries is limited by the polysulfides shuttling and unstable lithium metal anodes. Herein, an asymmetric separator (CACNM@PP), composed of Co-Ni/MXene (CNM) on the cathode and Cu-Ag/MXene (CAM) on the anode for high-performance Li-S batteries is reported. For the cathode, CNM provides a synergistic effect by integrating Co, Ni, and MXene, resulting in strong chemical interactions and fast conversion kinetics for polysulfides. For the anode, CAM with abundant lithiophilicity active sites can lower the nucleation barrier of Li. Moreover, LiCl/LiF layers are generated in situ as an ion conductor layer during charging and discharging, inducing a uniform deposition of Li. Therefore, the assembled cells with the CACNM@PP separators harvest excellent electrochemical performance. This work provides novel insights into the development of commercially available high-energy density Li-S batteries with asymmetric separators.

15.
Small ; 20(31): e2311850, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38446091

RESUMEN

Lithium-sulfur (Li-S) batteries hold immense promise as next-generation energy storage due to their high theoretical energy density (2600 Wh kg⁻¹), low cost, and non-toxic nature. However, practical implementation faces challenges, primarily from Li polysulfide (LiPS) shuttling within the cathode and Li dendrite growth at the anode. Optimized electrodes/electrolytes design effectively confines LiPS to the cathode, boosting cycling performance in coin cells to up to hundreds of cycles. Scaling up to larger pouch cells presents new obstacles, requiring further research for long-term stability. A 1.45 Ah pouch cell, with optimized sulfur loading and electrolyte/sulfur ratio is developed, which delivers an energy density of 151 Wh kg-1 with 70% capacity retention up to 100 cycles. Targeting higher energy density (180 Wh kg-1), the developed 1Ah pouch cell exhibits 68% capacity retention after 50 cycles. Morphological analysis reveals that pouch cell failure is primarily from Li metal powdering and resulting polarization, rather than LiPS shuttling. This occurs for continuous Li ion stripping/plating during cycling, leading to dendrite growth and formation of non-reactive Li powder, especially under high currents. These issues increase ion diffusion resistance and reduce coulombic efficiency over time. Therefore, the study highlights the importance of a protected Li metal anode for achieving high-energy-dense batteries.

16.
Small ; : e2402725, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837316

RESUMEN

Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.

17.
Small ; 20(1): e2304847, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658511

RESUMEN

The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.

18.
Small ; 20(8): e2306159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840442

RESUMEN

2D metal-organic frameworks (2D MOFs) with π conjugation have attracted widespread attention in the field of lithium storage due to their unique electron transfer units and structural characteristics. However, the periodic 2D planar extension structure hides some active sites, which is not conducive to the utilization of its structural advantages. In this work, a series of triptycene-based 2D conductive MOFs (M-DBH, M = Ni, Mn, and Co) with 3D extension structures are constructed by coordinating 9,10-dihydro-9,10-[1,2]benzenoanthracene-2,3,6,7,14,15-hexaol with metal ions to explore their potential applications in lithium-ion and lithium-sulfur batteries. This is the first study in which 2D conductive MOFs with the 3D extended molecule are used as electrode materials for lithium storage. The designed material generates rich active sites through staggered stacking layers and shows excellent performance in lithium-ion and lithium-sulfur batteries. The capacity retention rate of Ni-DBH can reach over 70% after 500 cycles at 0.2 C in lithium-ion batteries, while the capacity of S@Mn-DBH exceeds 305 mAh g-1 after 480 cycles at 0.5 C in lithium-sulfur batteries. Compared with the materials with 2D planar extended structures, the M-DBH electrodes with 3D extended structures in this work exhibit better performance in terms of cycle time and lithium storage capacity.

19.
Small ; : e2311193, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739093

RESUMEN

LiB alloy is promising lithium (Li) metal anode material because the continuous internal LiB fiber skeleton can effectively suppress Li dendrites and structural pulverization. However, the unvalued surface states limit the practical application of LiB alloy anodes. Herein, the study examined the influence of the different exposure manners of the internal LiB fiber skeleton owing to the various surface states of the LiB alloy anode on electrochemical performance and targetedly proposed a scalable friction coating strategy to construct a lithiated fumed silica (LFS) functional layer with abundant electrochemically active sites on the surface of the LiB alloy anode. The LFS significantly suppresses the inhomogeneous interfacial electrochemical behavior of the LiB alloy anode and enables the exposure of the internal LiB fiber skeleton in a homogeneously planar manner (LFS-LiB). Thus, a 0.5 Ah LFS-LiB||LiCoO2 (LCO) pouch cell exhibits a discharge capacity retention rate of 80% after 388 cycles. Moreover, a 6.15 Ah LFS-LiB||S pouch cell with 409.3 Wh kg-1 exhibits a discharge capacity retention rate of 80% after 30 cycles. In conclusion, the study findings provide a new research perspective for Li alloy anodes.

20.
Acta Neuropathol ; 147(1): 13, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194050

RESUMEN

The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.


Asunto(s)
Lisencefalia , Humanos , Lisencefalia/genética , Movimiento Celular/genética , Proliferación Celular , Corteza Cerebral , Dineínas/genética , Proteínas Portadoras , Proteínas Asociadas a Microtúbulos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA