Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Liver Int ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847599

RESUMEN

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS: RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS: Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS: In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.

2.
Mol Cell Endocrinol ; 578: 112061, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678604

RESUMEN

Hepatic lipid deposition is the main cause of non-alcoholic fatty liver disease (NAFLD). Our previous study identified that lnc-HC prevents NAFLD by increasing the expression of miR-130b-3p. In the present study, we show that lnc-HC, an lncRNA derived from hepatocytes, positively controls miR-130b-3p maturation at multiple levels and contributes to its action by enhancing the assembly of an RNA-induced silencing complex (RISC). lnc-HC negatively regulates the downstream target genes of miR-130b-3p, including peroxisome proliferator-activated receptor gamma (PPARγ) and acyl-CoA synthetase long-chain family member 1 and 4 (Acsl1 and Acsl4, respectively), thus suppressing hepatic lipid droplet accumulation. Mechanistically, lnc-HC enhanced the promoter activity of miR-130b-3p by positively regulating the expression of transcription factors MAF bZIP transcription factor B (Mafb) and Jun proto-oncogene (Jun). Then, lnc-HC contributed the processing step of primary (pri-) miR-130b and strengthened the interaction between Drosha enzyme and the 5'-flanking sequence of pri-miR-130b to produce more precursor transcripts. Through direct binding with the chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1), lnc-HC contributed to RISC assembly, which was composed of HSP90AA1, argonaute RISC catalytic component 2 (AGO2) and miR-130b-3p. In a high-fat, high-cholesterol-induced hepatic lipid disorder E3 model, we confirmed that the hepatic expression of lnc-HC/miR-130b-3p negatively correlated with that of the target genes and was closely associated with liver triglycerides concentration. These findings provide a deeper understanding of the regulatory roles of lnc-HC in hepatic lipid metabolism and NAFLD development.

3.
Mol Ther Nucleic Acids ; 20: 468-479, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278306

RESUMEN

Hepatocellular carcinoma (HCC) is the most commonly diagnosed cancer and the leading cause of cancer mortality. Several lines of evidence have demonstrated the aberrant expression of long noncoding RNAs (lncRNAs) in carcinogenesis and their universal regulatory properties. A thorough understanding of lncRNA regulatory roles in HCC pathology would contribute to HCC prevention and treatment. In this study, we identified a novel human lncRNA, LNC-HC, with significantly reduced levels in hepatic tumors from patients with HCC. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide) assays as well as colony formation and wound healing experiments showed that LNC-HC significantly inhibited the proliferation of the HCC cell line Huh7. Xenograft transplantation of LNC-HC-overexpressing Huh7 cells in nude mice resulted in the production of smaller tumors. Mechanistically, LNC-HC inhibited the proliferation of HCC cells by directly interacting with hsa-miR-183-5p. LNC-HC rescued the expression of five tumor suppressors, including AKAP12, DYRK2, FOXN3, FOXO1, and LATS2, that were verified as target genes of hsa-miR-183-5p. Overall, human LNC-HC was identified as a novel tumor suppressor that could inhibit HCC cell proliferation in vitro and suppress tumor growth in vivo by competitively binding hsa-miR-183-5p as a competing endogenous RNA (ceRNA). These findings suggest that LNC-HC could be a biomarker of HCC and provide a novel therapeutic target for HCC treatment.

4.
Mol Ther Nucleic Acids ; 18: 954-965, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31770672

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is due to the excessive lipid accumulation within hepatocytes. Metabolic nuclear receptors (MNRs) play great roles in lipid homeostasis. We have identified a novel long noncoding RNA (lncRNA), lnc-HC, which regulates hepatocytic cholesterol metabolism through reducing Cyp7a1 and Abca1 expression. Here, we further elucidate its roles in hepatic fatty acid and triglyceride (TG) metabolism through a novel lncRNA regulatory mechanism. The most prominent target of lnc-HC identified by in vitro study is PPARγ. Further studies revealed that lnc-HC negatively regulates PPARγ at both the mRNA and protein levels and suppresses hepatocytic lipid droplet formation. Importantly, the function of lnc-HC in regulating PPARγ expression depends on modulating miR-130b-3p expression from the transcriptional to the post-transcriptional level, not through lncRNA's critical modulating patterns. In vivo, the reduction of lnc-HC expression significantly decreases miR-130b-3p expression, induces PPARγ expression, and increases TG concentration in rat livers with hyperlipidemia. These findings further help in understanding the regulatory pattern of lnc-HC in hepatic lipid metabolism and might present a possible therapeutic target for improving lipid homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA