Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.729
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(1): 194-208.e18, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36580914

RESUMEN

The diversity and complex organization of cells in the brain have hindered systematic characterization of age-related changes in its cellular and molecular architecture, limiting our ability to understand the mechanisms underlying its functional decline during aging. Here, we generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using spatially resolved single-cell transcriptomics and quantified changes in gene expression and spatial organization of major cell types in these regions over the mouse lifespan. We observed substantially more pronounced changes in cell state, gene expression, and spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and immune cell activation during aging, particularly enriched in the subcortical white matter, and identified both similarities and notable differences in cell-activation patterns induced by aging and systemic inflammatory challenge. These results provide critical insights into age-related decline and inflammation in the brain.


Asunto(s)
Envejecimiento , Sustancia Blanca , Ratones , Animales , Envejecimiento/genética , Encéfalo/metabolismo , Neuroglía , Longevidad , Transcriptoma , Análisis de la Célula Individual
2.
Cell ; 180(2): 348-358.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883796

RESUMEN

Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Caulobacter crescentus/ultraestructura , Microscopía por Crioelectrón/métodos , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografía/métodos
3.
Immunity ; 56(4): 753-767.e8, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37001519

RESUMEN

Intracellular sensing of lipopolysaccharide (LPS) by murine caspase-11 or human caspase-4 initiates a protease cascade, termed the non-canonical inflammasome, that results in gasdermin D (GSDMD) processing and subsequent NLRP3 inflammasome activation. In an effort aimed at identifying additional sensors for intracellular LPS by biochemical screening, we identified the nuclear orphan receptor Nur77 as an LPS-binding protein in macrophage lysates. Nr4a1-/- macrophages exhibited impaired activation of the NLRP3 inflammasome, but not caspase-11, in response to LPS. Biochemical mapping revealed that Nur77 bound LPS directly through a domain in its C terminus. Yeast two-hybrid assays identified NLRP3 as a binding partner for Nur77. The association between Nur77 and NLRP3 required the presence of LPS and dsDNA. The source of dsDNA was the mitochondria, requiring the formation of gasdermin-D pores. In vivo, Nur77 deficiency ameliorated host response to endotoxins. Thus, Nur77 functions as an intracellular LPS sensor, binding mitochondrial DNA and LPS to activate the non-canonical NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Humanos , Ratones , Caspasa 1/metabolismo , Caspasas/metabolismo , Gasderminas , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
4.
Mol Cell ; 84(5): 967-980.e10, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38242130

RESUMEN

Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.


Asunto(s)
Histonas , Óxido Nítrico , Histonas/genética , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Óxido Nítrico/metabolismo , Complejo Mediador/metabolismo , Oxidorreductasas/metabolismo
5.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35182483

RESUMEN

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Asunto(s)
Infecciones Bacterianas , Listeriosis , Linfocitos B , Centro Germinal , Humanos , Monocitos
6.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
7.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35508166

RESUMEN

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Células Endoteliales , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Monocitos
8.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693356

RESUMEN

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Francisella/inmunología , GTP Fosfohidrolasas/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Linfocitos B/inmunología , Caspasas/metabolismo , Caspasas Iniciadoras , Citosol/inmunología , Citosol/microbiología , GTP Fosfohidrolasas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Celular , Inmunidad Innata , Inflamasomas/metabolismo , Ligandos , Ratones , Ratones Mutantes , Células Mieloides/inmunología , Linfocitos T/inmunología
9.
Immunity ; 54(8): 1665-1682.e14, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129840

RESUMEN

Tight control of inflammatory gene expression by antagonistic environmental cues is key to ensure immune protection while preventing tissue damage. Prostaglandin E2 (PGE2) modulates macrophage activation during homeostasis and disease, but the underlying mechanisms remain incompletely characterized. Here we dissected the genomic properties of lipopolysaccharide (LPS)-induced genes whose expression is antagonized by PGE2. The latter molecule targeted a set of inflammatory gene enhancers that, already in unstimulated macrophages, displayed poorly permissive chromatin organization and were marked by the transcription factor myocyte enhancer factor 2A (MEF2A). Deletion of MEF2A phenocopied PGE2 treatment and abolished type I interferon (IFN I) induction upon exposure to innate immune stimuli. Mechanistically, PGE2 interfered with LPS-mediated activation of ERK5, a known transcriptional partner of MEF2. This study highlights principles of plasticity and adaptation in cells exposed to a complex environment and uncovers a transcriptional circuit for IFN I induction with relevance for infectious diseases or cancer.


Asunto(s)
Dinoprostona/inmunología , Interferón Tipo I/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Animales , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Interferón Tipo I/biosíntesis , Lipopolisacáridos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 7 Activada por Mitógenos/metabolismo
10.
Immunity ; 53(5): 1033-1049.e7, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33049219

RESUMEN

Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.


Asunto(s)
Endotoxinas/inmunología , Interleucina-10/metabolismo , Microglía/inmunología , Microglía/metabolismo , Animales , Biomarcadores , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Inmunofenotipificación , Interleucina-10/genética , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Lipopolisacáridos/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones
11.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31076358

RESUMEN

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Asunto(s)
Coagulación Sanguínea , Inflamasomas/metabolismo , Piroptosis , Trombosis/etiología , Trombosis/metabolismo , Animales , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Biomarcadores , Caspasas/metabolismo , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/mortalidad
12.
Trends Biochem Sci ; 48(10): 883-893, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567806

RESUMEN

Guanylate-binding proteins (GBPs) are a family of intracellular proteins which have diverse biological functions, including pathogen sensing and host defense against infectious disease. These proteins are expressed in response to interferon (IFN) stimulation and can localize and target intracellular microbes (e.g., bacteria and viruses) by protein trafficking and membrane binding. These properties contribute to the ability of GBPs to induce inflammasome activation, inflammation, and cell death, and to directly disrupt pathogen membranes. Recent biochemical studies have revealed that human GBP1, GBP2, and GBP3 can directly bind to the lipopolysaccharide (LPS) of Gram-negative bacteria. In this review we discuss emerging data highlighting the functional versatility of GBPs, with a focus on their molecular mechanisms of pattern recognition and antimicrobial activity.


Asunto(s)
Antiinfecciosos , Proteínas Portadoras , Humanos , Proteínas de Unión al GTP/química , Inflamasomas/metabolismo , Bacterias/metabolismo , Antiinfecciosos/farmacología
13.
EMBO J ; 42(13): e111867, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37203866

RESUMEN

Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Ratones , Animales , Proteínas 14-3-3 , Factores de Transcripción/genética , Mediadores de Inflamación
14.
Immunity ; 48(1): 59-74.e5, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343440

RESUMEN

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1ß and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.


Asunto(s)
Calcio/metabolismo , Activación de Macrófagos/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Técnicas de Cultivo de Célula , Endocitosis/efectos de los fármacos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Técnicas de Genotipaje , Immunoblotting , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Canales Catiónicos TRPM/genética
15.
Semin Immunol ; 69: 101781, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352727

RESUMEN

Pyroptosis is a programmed necrotic cell death executed by gasdermins, a family of pore-forming proteins. The cleavage of gasdermins by specific proteases enables their pore-forming activity. The activation of the prototype member of the gasdermin family, gasdermin D (GSDMD), is linked to innate immune monitoring by inflammasomes. Additional gasdermins such as GSDMA, GSDMB, GSDMC, and GSDME are activated by inflammasome-independent mechanisms. Pyroptosis is emerging as a key host defense strategy against pathogens. However, excessive pyroptosis causes cytokine storm and detrimental inflammation leading to tissue damage and organ dysfunction. Consequently, dysregulated pyroptotic responses contribute to the pathogenesis of various diseases, including sepsis, atherosclerosis, acute respiratory distress syndrome, and neurodegenerative disorders. This review will discuss the inflammatory consequences of pyroptosis and the mechanisms of pyroptosis-induced tissue damage and disease pathogenesis.


Asunto(s)
Gasderminas , Piroptosis , Humanos , Piroptosis/fisiología , Proteínas de Neoplasias/metabolismo , Apoptosis , Inflamación , Inflamasomas , Biomarcadores de Tumor , Proteínas Citotóxicas Formadoras de Poros/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(17): e2321510121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635633

RESUMEN

Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. Escherichia coli adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation. LapB achieves this by simultaneously interacting with FtsH through its transmembrane helix and LpxC through its cytoplasmic domain. Here, we describe a cryo-EM structure of the complex formed between LpxC and the cytoplasmic domain of LapB (LapBcyto). The structure reveals how LapB exploits both its tetratricopeptide repeat (TPR) motifs and rubredoxin domain to interact with LpxC. Through both in vitro and in vivo analysis, we show that mutations at the LapBcyto/LpxC interface prevent LpxC degradation. Unexpectedly, binding to LapBcyto also inhibits the enzymatic activity of LpxC through allosteric effects reminiscent of LpxC activation by MurA in Pseudomonas aeruginosa. Our findings argue that LapB regulates LPS synthesis in two steps: In the first step, LapB inhibits the activity of LpxC, and in the second step, it commits LpxC to degradation by FtsH.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutación , Rubredoxinas/metabolismo , Amidohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo
17.
Immunity ; 46(1): 38-50, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986454

RESUMEN

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Asunto(s)
Proteínas de Fase Aguda/inmunología , Proteínas Portadoras/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/inmunología , Antígeno 96 de los Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 4/inmunología , Animales , Humanos , Ratones , Microscopía Electrónica de Transmisión , Transducción de Señal/inmunología
18.
Immunity ; 46(6): 1030-1044.e8, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636953

RESUMEN

Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal circuits in the developing central nervous system, but eventually adopt relative quiescence and ramified morphology in the adult. Here, we probed the impact of post-transcriptional control by microRNAs (miRNAs) on microglial performance during development and adulthood by generating mice lacking microglial Dicer expression at these distinct stages. Conditional Dicer ablation in adult microglia revealed that miRNAs were required to limit microglial responses to challenge. After peripheral endotoxin exposure, Dicer-deficient microglia expressed more pro-inflammatory cytokines than wild-type microglia and thereby compromised hippocampal neuronal functions. In contrast, prenatal Dicer ablation resulted in spontaneous microglia activation and revealed a role for Dicer in DNA repair and preservation of genome integrity. Accordingly, Dicer deficiency rendered otherwise radio-resistant microglia sensitive to gamma irradiation. Collectively, the differential impact of the Dicer ablation on microglia of the developing and adult brain highlights the changes these cells undergo with time.


Asunto(s)
Hipocampo/metabolismo , MicroARNs/genética , Microglía/fisiología , Neuronas/fisiología , Ribonucleasa III/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Reparación del ADN , Femenino , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Humanos , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Actividad Motora , Plasticidad Neuronal , Ribonucleasa III/genética
19.
Proc Natl Acad Sci U S A ; 120(15): e2218469120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014865

RESUMEN

Pyroptosis is an inflammatory form of cell death induced upon recognition of invading microbes. During an infection, pyroptosis is enhanced in interferon-gamma-exposed cells via the actions of members of the guanylate-binding protein (GBP) family. GBPs promote caspase-4 (CASP4) activation by enhancing its interactions with lipopolysaccharide (LPS), a component of the outer envelope of Gram-negative bacteria. Once activated, CASP4 promotes the formation of noncanonical inflammasomes, signaling platforms that mediate pyroptosis. To establish an infection, intracellular bacterial pathogens, like Shigella species, inhibit pyroptosis. The pathogenesis of Shigella is dependent on its type III secretion system, which injects ~30 effector proteins into host cells. Upon entry into host cells, Shigella are encapsulated by GBP1, followed by GBP2, GBP3, GBP4, and in some cases, CASP4. It has been proposed that the recruitment of CASP4 to bacteria leads to its activation. Here, we demonstrate that two Shigella effectors, OspC3 and IpaH9.8, cooperate to inhibit CASP4-mediated pyroptosis. We show that in the absence of OspC3, an inhibitor of CASP4, IpaH9.8 inhibits pyroptosis via its known degradation of GBPs. We find that, while some LPS is present within the host cell cytosol of epithelial cells infected with wild-type Shigella, in the absence of IpaH9.8, increased amounts are shed in a GBP1-dependent manner. Furthermore, we find that additional IpaH9.8 targets, likely GBPs, promote CASP4 activation, even in the absence of GBP1. These observations suggest that by boosting LPS release, GBP1 provides CASP4-enhanced access to cytosolic LPS, thus promoting host cell death via pyroptosis.


Asunto(s)
Lipopolisacáridos , Shigella , Bacterias/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Piroptosis , Shigella/metabolismo , Caspasas Iniciadoras/metabolismo
20.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458396

RESUMEN

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Asunto(s)
Amidohidrolasas , Inhibidores Enzimáticos , Escherichia coli , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Lipopolisacáridos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Farmacorresistencia Bacteriana/efectos de los fármacos , Membrana Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA