Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(8): 100811, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996918

RESUMEN

Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.


Asunto(s)
Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Animales , Proteómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ratones , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Encéfalo/metabolismo , Giro Dentado/metabolismo , Cromatografía Líquida con Espectrometría de Masas
2.
Plant J ; 118(5): 1668-1688, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407828

RESUMEN

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).


Asunto(s)
Biocombustibles , Pared Celular , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Tallos de la Planta , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Perfilación de la Expresión Génica
3.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394032

RESUMEN

Shoot-borne adventitious/crown roots form a highly derived fibrous root system in grasses. The molecular mechanisms controlling their development remain largely unknown. Here, we provide a genome-wide landscape of transcriptional signatures - tightly regulated auxin response and in-depth spatio-temporal expression patterns of potential epigenetic modifiers - and transcription factors during priming and outgrowth of rice (Oryza sativa) crown root primordia. Functional analyses of rice transcription factors from WUSCHEL-RELATED HOMEOBOX and PLETHORA gene families reveal their non-redundant and species-specific roles in determining the root architecture. WOX10 and PLT1 regulate both shoot-borne crown roots and root-borne lateral roots, but PLT2 specifically controls lateral root development. PLT1 activates local auxin biosynthesis genes to promote crown root development. Interestingly, O. sativa PLT genes rescue lateral root primordia outgrowth defects of Arabidopsis plt mutants, demonstrating their conserved role in root primordia outgrowth irrespective of their developmental origin. Together, our findings unveil a molecular framework of tissue transdifferentiation during root primordia establishment, leading to the culmination of robust fibrous root architecture. This also suggests that conserved factors have evolved their transcription regulation to acquire species-specific function.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190817

RESUMEN

Cold stress during early development limits maize (Zea mays L.) production in temperate zones. Low temperatures restrict root growth and reprogram gene expression. Here, we provide a systematic transcriptomic landscape of maize primary roots, their tissues, and cell types in response to cold stress. The epidermis exhibited a unique transcriptomic cold response, and genes involved in root hair formation were dynamically regulated in this cell type by cold. Consequently, activation of genes involved in root hair tip growth contributed to root hair recovery under moderate cold conditions. The maize root hair defective mutants roothair defective 5 (rth5) and roothair defective 6 (rth6) displayed enhanced cold tolerance with respect to primary root elongation. Furthermore, dehydration response element-binding protein 2.1 (dreb2.1) was the only member of the dreb subfamily of AP2/EREB transcription factor genes upregulated in primary root tissues and cell types but exclusively downregulated in root hairs upon cold stress. Plants overexpressing dreb2.1 significantly suppressed root hair elongation after moderate cold stress. Finally, the expression of rth3 was regulated by dreb2.1 under cold conditions, while rth6 transcription was regulated by dreb2.1 irrespective of the temperature regime. We demonstrated that dreb2.1 negatively regulates root hair plasticity at low temperatures by coordinating the expression of root hair defective genes in maize.

5.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051661

RESUMEN

The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets. To understand how the transcriptional profile differs between the BAs, layers, and sublayers of human sgACC, we collected layer strips using laser capture microdissection followed by RNA sequencing. We found no significant differences in transcript expression in these specific cortical layers between BAs within the sgACC. In contrast, we identified striking differences between Layers 3 and 5a or 5b that were concordant across sgACC BAs. We found that sublayers 5a and 5b were transcriptionally similar. Pathway analyses of L3 and L5 revealed overlapping biological processes related to synaptic function. However, L3 was enriched for pathways related to cell-to-cell junction and dendritic spines whereas L5 was enriched for pathways related to brain development and presynaptic function, indicating potential functional differences across layers. Our study provides important insight into normative transcriptional features of the sgACC.


Asunto(s)
Giro del Cíngulo , Transcriptoma , Humanos , Giro del Cíngulo/fisiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Adulto Joven , Captura por Microdisección con Láser
6.
Mol Cell Proteomics ; 22(2): 100491, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603806

RESUMEN

Conventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.e., functional) forms of proteins capturing genetic variations, alternatively spliced transcripts and posttranslational modifications. Herein, we described a spatially resolved top-down proteomics (TDP) platform for proteoform identification and quantitation directly from tissue sections. The spatial TDP platform consisted of a nanodroplet processing in one pot for trace samples-based sample preparation system and an laser capture microdissection-based cell isolation system. We improved the nanodroplet processing in one pot for trace samples sample preparation by adding benzonase in the extraction buffer to enhance the coverage of nucleus proteins. Using ∼200 cultured cells as test samples, this approach increased total proteoform identifications from 493 to 700; with newly identified proteoforms primarily corresponding to nuclear proteins. To demonstrate the spatial TDP platform in tissue samples, we analyzed laser capture microdissection-isolated tissue voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms within the union of top-down mass spectrometry-based proteoform identification and characterization and TDPortal identifications to match with features from protein mass extractor. Several proteoforms corresponding to the same gene exhibited mixed abundance profiles between two tissue regions, suggesting potential posttranslational modification-specific spatial distributions. The spatial TDP workflow has prospects for biomarker discovery at proteoform level from small tissue sections.


Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Microfluídica , Espectrometría de Masas , Proteínas de Unión al ADN
7.
Proc Natl Acad Sci U S A ; 119(35): e2208795119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36001691

RESUMEN

The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Transcriptoma , Zea mays , Ácidos Indolacéticos/metabolismo , Captura por Microdisección con Láser , Fotosíntesis/genética , Hojas de la Planta/embriología , Hojas de la Planta/genética , Zea mays/enzimología , Zea mays/genética
8.
J Proteome Res ; 23(5): 1801-1809, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38655769

RESUMEN

Alcohol consumption perturbs the gut immune barrier and ultimately results in alcoholic liver diseases, but little is known about how immune-related cells in the gut are perturbed in this process. In this study, we employed laser capture microdissection and a label-free proteomics approach to investigate the consequences of alcohol exposure to the proteomes of crypts and villi in the proximal small intestine. Intestinal tissues from alcohol-fed and pair-fed mice were microdissected to selectively capture cells in the crypts and villi regions, followed by one-pot protein digestion and data-independent LC-MS/MS analysis. We successfully identified over 3000 proteins from each of the crypt or villi regions equivalent to ∼3000 cells. Analysis of alcohol-treated tissues indicated an enhanced alcohol metabolism and reduced levels of α-defensins in crypts, alongside increased lipid metabolism and apoptosis in villi. Immunofluorescence imaging further corroborated the proteomic findings. Our work provides a detailed profiling of the proteomic changes in the compartments of the mouse small intestine and aids in molecular-level understanding of alcohol-induced tissue damage.


Asunto(s)
Etanol , Intestino Delgado , Proteómica , Animales , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Proteómica/métodos , Ratones , Etanol/toxicidad , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Proteoma/análisis , Proteoma/efectos de los fármacos , Captura por Microdisección con Láser , Cromatografía Liquida , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Masculino , Apoptosis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
9.
J Biol Chem ; 299(9): 105121, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536628

RESUMEN

Single-cell transcriptomics are powerful tools to define neuronal cell types based on co-expressed gene clusters. Limited RNA input in these technologies necessarily compromises transcriptome coverage and accuracy of differential expression analysis. We propose that bulk RNA-Seq of neuronal pools defined by spatial position offers an alternative strategy to overcome these technical limitations. We report a laser-capture microdissection (LCM)-Seq method which allows deep transcriptome profiling of fluorescently tagged neuron populations isolated with LCM from histological sections of transgenic mice. Mild formaldehyde fixation of ZsGreen marker protein, LCM sampling of ∼300 pooled neurons, followed by RNA isolation, library preparation and RNA-Seq with methods optimized for nanogram amounts of moderately degraded RNA enabled us to detect ∼15,000 different transcripts in fluorescently labeled cholinergic neuron populations. The LCM-Seq approach showed excellent accuracy in quantitative studies, allowing us to detect 2891 transcripts expressed differentially between the spatially defined and clinically relevant cholinergic neuron populations of the dorsal caudate-putamen and medial septum. In summary, the LCM-Seq method we report in this study is a versatile, sensitive, and accurate bulk sequencing approach to study the transcriptome profile and differential gene expression of fluorescently tagged neuronal populations isolated from transgenic mice with high spatial precision.

10.
Plant J ; 115(3): 642-661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37077034

RESUMEN

Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.


Asunto(s)
Citrus , Citrus/metabolismo , Captura por Microdisección con Láser , Transcriptoma , Semillas/metabolismo , Frutas/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes
11.
Clin Proteomics ; 21(1): 47, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961380

RESUMEN

Amyloidosis is a disease characterized by local and systemic extracellular deposition of amyloid protein fibrils where its excessive accumulation in tissues and resistance to degradation can lead to organ failure. Diagnosis is challenging because of approximately 36 different amyloid protein subtypes. Imaging methods like immunohistochemistry and the use of Congo red staining of amyloid proteins for laser capture microdissection combined with liquid chromatography tandem mass spectrometry (LMD/LC-MS/MS) are two diagnostic methods currently used depending on the expertise of the pathology laboratory. Here, we demonstrate a streamlined in situ amyloid peptide spatial mapping by Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging (MALDI-MSI) combined with Trapped Ion Mobility Spectrometry for potential transthyretin (ATTR) amyloidosis subtyping. While we utilized the standard LMD/LC-MS/MS workflow for amyloid subtyping of 31 specimens from different organs, we also evaluated the potential introduction in the MS workflow variations in data acquisition parameters like dynamic exclusion, or testing Data Dependent Acquisition combined with High-Field Asymmetric Waveform Ion Mobility Spectrometry (DDA FAIMS) versus Data Independent Acquisition (DIA) for enhanced amyloid protein identification at shorter acquisition times. We also demonstrate the use of Mascot's Error Tolerant Search and PEAKS de novo sequencing for the sequence variant analysis of amyloidosis specimens.

12.
Acta Neuropathol ; 148(1): 16, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105932

RESUMEN

We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.


Asunto(s)
Síndrome de Down , Lóbulo Frontal , Células Piramidales , Síndrome de Down/patología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Piramidales/patología , Células Piramidales/metabolismo , Masculino , Femenino , Lóbulo Frontal/patología , Lóbulo Frontal/metabolismo , Persona de Mediana Edad , Anciano , Fenotipo , Adulto , Anciano de 80 o más Años
13.
Exp Eye Res ; 246: 109989, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969282

RESUMEN

RNA sequencing (RNA-seq) coupled with laser capture microdissection (LCM) is a powerful tool for transcriptomic analysis in unfixed fresh-frozen tissues. Fixation of ocular tissues for immunohistochemistry commonly involves the use of paraformaldehyde (PFA) followed by embedding in Optimal Cutting Temperature (OCT) medium for long-term cryopreservation. However, the quality of RNA derived from such archival PFA-fixed/OCT-embedded samples is often compromised, limiting its suitability for transcriptomic studies. In this study, we aimed to develop a methodology to extract high-quality RNA from PFA-fixed canine eyes by utilizing LCM to isolate retinal tissue. We demonstrate the efficacy of an optimized LCM and RNA purification protocol for transcriptomic profiling of PFA-fixed retinal specimens. We compared four pairs of canine retinal tissues, where one eye was subjected to PFA-fixation prior to OCT embedding, while the contralateral eye was embedded fresh frozen (FF) in OCT without fixation. Since the RNA obtained from PFA-fixed retinas were contaminated with genomic DNA, we employed two rounds of DNase I treatment to obtain RNA suitable for RNA-seq. Notably, the quality of sequencing reads and gene sets identified from both PFA-fixed and FF tissues were nearly identical. In summary, our study introduces an optimized workflow for transcriptomic profiling from PFA-fixed archival retina. This refined methodology paves the way for improved transcriptomic analysis of preserved ocular tissue, bridging the gap between optimal sample preservation and high-quality RNA data acquisition.


Asunto(s)
Fijadores , Formaldehído , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Retina , Fijación del Tejido , Transcriptoma , Animales , Retina/metabolismo , Perfilación de la Expresión Génica/métodos , Captura por Microdisección con Láser/métodos , Fijación del Tejido/métodos , Perros , Flujo de Trabajo , Criopreservación , ARN/genética , Polímeros
14.
FASEB J ; 37(6): e22944, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37191946

RESUMEN

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Ratones , Animales , Síndrome de Down/genética , Síndrome de Down/metabolismo , Ratones Transgénicos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Colina/metabolismo , Suplementos Dietéticos
15.
Fish Shellfish Immunol ; 145: 109319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145782

RESUMEN

The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.


Asunto(s)
Lubina , Glándulas Endocrinas , Animales , Timo , Linfocitos T , Perfilación de la Expresión Génica
16.
Anal Bioanal Chem ; 416(7): 1745-1757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324070

RESUMEN

Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.


Asunto(s)
Multiómica , Neoplasias de la Próstata , Masculino , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Captura por Microdisección con Láser , Fosfatidilcolinas/metabolismo
17.
Mol Cell Proteomics ; 21(12): 100426, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244662

RESUMEN

Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.


Asunto(s)
Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Proteómica/métodos , Proteínas/metabolismo , Captura por Microdisección con Láser
18.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536344

RESUMEN

An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.


Asunto(s)
Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Semillas/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo
19.
Alzheimers Dement ; 20(1): 74-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37461318

RESUMEN

INTRODUCTION: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS: We performed laser capture microdissection of amyloid beta (Aß) plaques, the 50 µm halo around them, tangles with the 50 µm halo around them, and areas distant (> 50 µm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS: Aß plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aß plaques had more differentially expressed genes than tangles. We identified a gradient Aß plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aß plaques. DISCUSSION: Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aß plaques, and are exacerbated by the APOE ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares , Apolipoproteína E4/genética , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Transcriptoma , Placa Amiloide/metabolismo , Perfilación de la Expresión Génica
20.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891801

RESUMEN

The mechanism underlying podocyte dysfunction in minimal change disease (MCD) remains unknown. This study aimed to shed light on the potential pathophysiology of MCD using glomerular proteomic analysis. Shotgun proteomics using label-free quantitative mass spectrometry was performed on formalin-fixed, paraffin-embedded (FFPE) renal biopsies from two groups of samples: control (CTR) and MCD. Glomeruli were excised from FFPE renal biopsies using laser capture microdissection (LCM), and a single-pot solid-phase-enhanced sample preparation (SP3) digestion method was used to improve yield and protein identifications. Principal component analysis (PCA) revealed a distinct separation between the CTR and MCD groups. Forty-eight proteins with different abundance between the two groups (p-value ≤ 0.05 and |FC| ≥ 1.5) were identified. These may represent differences in podocyte structure, as well as changes in endothelial or mesangial cells and extracellular matrix, and some were indeed found in several of these structures. However, most differentially expressed proteins were linked to the podocyte cytoskeleton and its dynamics. Some of these proteins are known to be involved in focal adhesion (NID1 and ITGA3) or slit diaphragm signaling (ANXA2, TJP1 and MYO1C), while others are structural components of the actin and microtubule cytoskeleton of podocytes (ACTR3 and NES). This study suggests the potential of mass spectrometry-based shotgun proteomic analysis with LCM glomeruli to yield valuable insights into the pathogenesis of podocytopathies like MCD. The most significantly dysregulated proteins in MCD could be attributable to cytoskeleton dysfunction or may be a compensatory response to cytoskeleton malfunction caused by various triggers.


Asunto(s)
Glomérulos Renales , Nefrosis Lipoidea , Podocitos , Proteómica , Humanos , Nefrosis Lipoidea/metabolismo , Nefrosis Lipoidea/patología , Proteómica/métodos , Podocitos/metabolismo , Podocitos/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Femenino , Adulto , Proteoma/metabolismo , Proteoma/análisis , Captura por Microdisección con Láser , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA