Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 25(1): 748, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085785

RESUMEN

BACKGROUND: Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. RESULT: 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. CONCLUSION: Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.


Asunto(s)
Evolución Molecular , Liriodendron , Filogenia , Proteínas Quinasas , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas Repetidas Ricas en Leucina , Liriodendron/genética , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Fisiológico/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
2.
BMC Plant Biol ; 24(1): 94, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326748

RESUMEN

BACKGROUND: Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT: In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION: The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.


Asunto(s)
Liriodendron , Liriodendron/genética , Fitomejoramiento , Factores de Transcripción/genética , Ácidos Indolacéticos/metabolismo , Genómica , Regulación de la Expresión Génica de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 250, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580919

RESUMEN

Alternative splicing (AS), a pivotal post-transcriptional regulatory mechanism, profoundly amplifies diversity and complexity of transcriptome and proteome. Liriodendron chinense (Hemsl.) Sarg., an excellent ornamental tree species renowned for its distinctive leaf shape, which resembles the mandarin jacket. Despite the documented potential genes related to leaf development of L. chinense, the underlying post-transcriptional regulatory mechanisms remain veiled. Here, we conducted a comprehensive analysis of the transcriptome to clarify the genome-wide landscape of the AS pattern and the spectrum of spliced isoforms during leaf developmental stages in L. chinense. Our investigation unveiled 50,259 AS events, involving 10,685 genes (32.9%), with intron retention as the most prevalent events. Notably, the initial stage of leaf development witnessed the detection of 804 differentially AS events affiliated with 548 genes. Although both differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) were enriched into morphogenetic related pathways during the transition from fishhook (P2) to lobed (P7) leaves, there was only a modest degree of overlap between DASGs and DEGs. Furthermore, we conducted a comprehensively AS analysis on homologous genes involved in leaf morphogenesis, and most of which are subject to post-transcriptional regulation of AS. Among them, the AINTEGUMENTA-LIKE transcript factor LcAIL5 was characterization in detailed, which experiences skipping exon (SE), and two transcripts displayed disparate expression patterns across multiple stages. Overall, these findings yield a comprehensive understanding of leaf development regulation via AS, offering a novel perspective for further deciphering the mechanism of plant leaf morphogenesis.


Asunto(s)
Liriodendron , Liriodendron/genética , Empalme Alternativo , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Genes de Plantas
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473982

RESUMEN

Heat shock factors (Hsfs) play a crucial role in plant defense processes. However, the distribution and functional characteristics of Hsf genes in the relict plant Liriodendron chinense are still unclear. In this study, a total of 19 LcHsfs were identified and divided into three separate subgroups, comprising 10 LcHsfA, 7 LcHsfB, and 2 LcHsfC genes, respectively, based on their phylogenetic tree and the presence/absence of conserved protein domains. Whole-genome duplication and segmental duplication led to an expansion of the LhHsf gene family. The promoters of LcHsf genes are enriched for different types of cis-acting elements, including hormone responsive and abiotic-stress-responsive elements. The expression of LcHsfA3, LcHsfA4b, LcHsfA5, LcHsfB1b, and LcHsfB2b increased significantly as a result of both cold and drought treatments. LcHsfA2a, LcHsfA2b, and LcHsfA7 act as important genes whose expression levels correlate strongly with the expression of the LcHsp70, LcHsp110, and LcAPX genes under heat stress. In addition, we found that transiently transformed 35S:LcHsfA2a seedlings showed significantly lower levels of hydrogen peroxide (H2O2) after heat stress and showed a stronger thermotolerance. This study sheds light on the possible functions of LcHsf genes under abiotic stress and identifies potentially useful genes to target for molecular breeding, in order to develop more stress-resistant varieties.


Asunto(s)
Liriodendron , Liriodendron/metabolismo , Filogenia , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
5.
Plant J ; 112(2): 535-548, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36062348

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a class of plant secondary metabolites with great pharmacological value. Their biosynthetic pathways have been extensively elucidated in the species from the Ranunculales order, such as poppy and Coptis japonica, in which methylation events play central roles and are directly responsible for BIA chemodiversity. Here, we combined BIA quantitative profiling and transcriptomic analyses to identify novel BIA methyltransferases (MTs) from Liriodendron chinense, a basal angiosperm plant. We identified an N-methyltransferase (LcNMT1) and two O-methyltransferases (LcOMT1 and LcOMT3), and characterized their biochemical functions in vitro. LcNMT1 methylates (S)-coclaurine to produce mono- and dimethylated products. Mutagenesis experiments revealed that a single-residue alteration is sufficient to change its substrate selectivity. LcOMT1 methylates (S)-norcoclaurine at the C6 site and LcOMT3 methylates (S)-coclaurine at the C7 site, respectively. Two key residues of LcOMT3, A115 and T301, are identified as important contributors to its catalytic activity. Compared with Ranunculales-derived NMTs, Magnoliales-derived NMTs were less abundant and had narrower substrate specificity, indicating that NMT expansion has contributed substantially to BIA chemodiversity in angiosperms, particularly in Ranunculales species. In summary, we not only characterized three novel enzymes that could be useful in the biosynthetic production of valuable BIAs but also shed light on the molecular origin of BIAs during angiosperm evolution.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Liriodendron , Magnoliopsida , Bencilisoquinolinas/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Metiltransferasas/metabolismo , Liriodendron/metabolismo , Alcaloides/metabolismo
6.
BMC Plant Biol ; 23(1): 415, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684590

RESUMEN

As one of the largest plant specific transcription factor families, NAC family members play an important role in plant growth, development and stress resistance. To investigate the function of NAC transcription factors during abiotic stress, as well as during somatic embryogenesis, we identified and characterized the NAC gene family in Liriodendron chinense. We found that most LcNAC members contain more than three exons, with a relatively conserved gene and motif structure, especially at the N-terminus. Interspecies collinearity analysis revealed a closer relationship between the L. chinense NACs and the P. trichocarpa NACs. We analyzed the expression of LcNAC in different tissues and under three abiotic stresses. We found that 12 genes were highly expressed during the ES3 and ES4 stages of somatic embryos, suggesting that they are involved in the development of somatic embryos. 6 LcNAC genes are highly expressed in flower organs. The expression pattern analysis of LcNACs based on transcriptome data and RT-qPCR obtained from L. chinense leaves indicated differential expression responses to drought, cold, and heat stress. Genes in the NAM subfamily expressed differently during abiotic stress, and LcNAC6/18/41/65 might be the key genes in response to abiotic stress. LcNAC6/18/41/65 were cloned and transiently transformed into Liriodendron protoplasts, where LcNAC18/65 was localized in cytoplasm and nucleus, and LcNAC6/41 was localized only in nucleus. Overall, our findings suggest a role of the NAC gene family during environmental stresses in L. chinense. This research provides a basis for further study of NAC genes in Liriodendron chinense.


Asunto(s)
Liriodendron , Acetilcisteína , Núcleo Celular , Citoplasma
7.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894868

RESUMEN

N6-methyladenosine (m6A) is becoming one of the most important RNA modifications in plant growth and development, including defense, cell differentiation, and secondary metabolism. YT521-B homology (YTH) domain-containing RNA-binding proteins, identified as m6A readers in epitranscriptomics, could affect the fate of m6A-containing RNA by recognizing and binding the m6A site. Therefore, the identification and study of the YTH gene family in Liriodendron chinense (L. chinense) can provide a molecular basis for the study of the role of m6A in L. chinense, but studies on the YTH gene in L. chinense have not been reported. We identified nine putative YTH gene models in the L. chinense genome, which can be divided into DF subgroups and DC subgroups. Domain sequence analysis showed that the LcYTH protein had high sequence conservation. A LcYTH aromatic cage bag is composed of tryptophan and tryptophan (WWW). PrLDs were found in the protein results of YTH, suggesting that these genes may be involved in the process of liquid-liquid phase separation. LcYTH genes have different tissue expression patterns, but the expression of LcYTHDF2 is absolutely dominant in all tissues. In addition, the expression of the LcYTH genes is changed in response to ABA and MeJA. In this study, We identified and analyzed the expression pattern of LcYTH genes. Our results laid a foundation for further study of the function of the LcYTH gene and further genetic and functional analyses of m6A RNA modification in forest trees.


Asunto(s)
Liriodendron , Liriodendron/metabolismo , Triptófano , Adenosina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo
8.
BMC Plant Biol ; 22(1): 25, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012508

RESUMEN

BACKGROUND: Liriodendron chinense (Lchi) is a tree species within the Magnoliaceae family and is considered a basal angiosperm. The too low or high temperature or soil drought will restrict its growth as the adverse environmental conditions, thus improving L. chinense abiotic tolerance was the key issues to study. WRKYs are a major family of plant transcription factors known to often be involved in biotic and abiotic stress responses. So far, it is still largely unknown if and how the LchiWRKY gene family is tied to regulating L. chinense stress responses. Therefore, studying the involvement of the WRKY gene family in abiotic stress regulation in L. chinense could be very informative in showing how this tree deals with such stressful conditions. RESULTS: In this research, we performed a genome-wide analysis of the Liriodendron chinense (Lchi) WRKY gene family, studying their classification relationships, gene structure, chromosomal locations, gene duplication, cis-element, and response to abiotic stress. The 44 members of the LchiWRKY gene family contain a significant amount of sequence diversity, with their lengths ranging from 525 bp to 40,981 bp. Using classification analysis, we divided the 44 LchiWRKY genes into three phylogenetic groups (I, II, II), with group II then being further divided into five subgroups (IIa, IIb, IIc, IId, IIe). Comparative phylogenetic analysis including the WRKY families from 17 plant species suggested that LchiWRKYs are closely related to the Magnolia Cinnamomum kanehirae WRKY family, and has fewer family members than higher plants. We found the LchiWRKYs to be evenly distributed across 15 chromosomes, with their duplication events suggesting that tandem duplication may have played a major role in LchiWRKY gene expansion model. A Ka/Ks analysis indicated that they mainly underwent purifying selection and distributed in the group IId. Motif analysis showed that LchiWRKYs contained 20 motifs, and different phylogenetic groups contained conserved motif. Gene ontology (GO) analysis showed that LchiWRKYs were mainly enriched in two categories, i.e., biological process and molecular function. Two group IIc members (LchiWRKY10 and LchiWRKY37) contain unique WRKY element sequence variants (WRKYGKK and WRKYGKS). Gene structure analysis showed that most LchiWRKYs possess 3 exons and two different types of introns: the R- and V-type which are both contained within the WRKY domain (WD). Additional promoter cis-element analysis indicated that 12 cis-elements that play different functions in environmental adaptability occur across all LchiWRKY groups. Heat, cold, and drought stress mainly induced the expression of group II and I LchiWRKYs, some of which had undergone gene duplication during evolution, and more than half of which had three exons. LchiWRKY33 mainly responded to cold stress and LchiWRKY25 mainly responded to heat stress, and LchiWRKY18 mainly responded to drought stress, which was almost 4-fold highly expressed, while 5 LchiWRKYs (LchiWRKY5, LchiWRKY23, LchiWRKY14, LchiWRKY27, and LchiWRKY36) responded equally three stresses with more than 6-fold expression. Subcellular localization analysis showed that all LchiWRKYs were localized in the nucleus, and subcellular localization experiments of LchiWRKY18 and 36 also showed that these two transcription factors were expressed in the nucleus. CONCLUSIONS: This study shows that in Liriodendron chinense, several WRKY genes like LchiWRKY33, LchiWRKY25, and LchiWRKY18, respond to cold or heat or drought stress, suggesting that they may indeed play a role in regulating the tree's response to such conditions. This information will prove a pivotal role in directing further studies on the function of the LchiWRKY gene family in abiotic stress response and provides a theoretical basis for popularizing afforestation in different regions of China.


Asunto(s)
Aclimatación/genética , Respuesta al Choque por Frío/genética , Deshidratación/genética , Sequías , Estudio de Asociación del Genoma Completo , Respuesta al Choque Térmico/genética , Liriodendron/genética , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Filogenia
9.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563155

RESUMEN

In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.


Asunto(s)
Liriodendron , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Liriodendron/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
10.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499378

RESUMEN

Heat shock proteins (HSPs) are conserved molecular chaperones whose main role is to facilitate the regulation of plant growth and stress responses. The HSP gene family has been characterized in most plants and elucidated as generally stress-induced, essential for their cytoprotective roles in cells. However, the HSP gene family has not yet been analyzed in the Liriodendron chinense genome. In current study, 60 HSP genes were identified in the L. chinense genome, including 7 LchiHSP90s, 23 LchiHSP70s, and 30 LchiHSP20s. We investigated the phylogenetic relationships, gene structure and arrangement, gene duplication events, cis-acting elements, 3D-protein structures, protein-protein interaction networks, and temperature stress responses in the identified L. chinense HSP genes. The results of the comparative phylogenetic analysis of HSP families in 32 plant species showed that LchiHSPs are closely related to the Cinnamomum kanehirae HSP gene family. Duplication events analysis showed seven segmental and six tandem duplication events that occurred in the LchiHSP gene family, which we speculated to have played an important role in the LchiHSP gene expansion and evolution. Furthermore, the Ka/Ks analysis indicated that these genes underwent a purifying selection. Analysis in the promoter region evidenced that the promoter region LchiHSPs carry many stress-responsive and hormone-related cis-elements. Investigations in the gene expression patterns of the LchiHSPs using transcriptome data and the qRT-PCR technique indicated that most LchiHSPs were responsive to cold and heat stress. In total, our results provide new insights into understanding the LchiHSP gene family function and their regulatory mechanisms in response to abiotic stresses.


Asunto(s)
Proteínas de Choque Térmico , Liriodendron , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Liriodendron/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta
11.
J Environ Manage ; 322: 116024, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055092

RESUMEN

Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.


Asunto(s)
Liriodendron , Cambio Climático , Ecosistema , Ambiente , Árboles
12.
BMC Genomics ; 22(1): 807, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749659

RESUMEN

BACKGROUND: Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. RESULTS: In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. CONCLUSIONS: Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Liriodendron , Liriodendron/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Biol Res ; 53(1): 21, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410692

RESUMEN

BACKGROUND: Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. RESULTS: We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. CONCLUSIONS: The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.


Asunto(s)
Genoma del Cloroplasto/genética , Genoma de Planta/genética , Liriodendron/genética , Polimorfismo Genético/genética , Alelos , Cartilla de ADN/genética , ADN de Plantas/genética , Genotipo , Repeticiones de Microsatélite , Secuenciación Completa del Genoma
14.
Plants (Basel) ; 13(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38498462

RESUMEN

Stand density affects the potentially superior productivity of forest ecosystems directly by regulating the light and nutrient availability of trees. Understanding how stand density influences the growth and development of trees is crucial for supporting forest management in the context of climate change. We focused on Liriodendron chinense in experimental plantations created in 2003, with planting densities ranging from 277 to 10,000 trees per hectare at six plots. The leaf structure and photosynthetic capacity of L. chinense changed significantly under different stand densities, which had a negative impact on their biomass (leaf mass) and nutrient (total carbohydrate content) accumulation. Transcriptional differences were observed among samples from plots with different planting densities. The expression of 1784 genes was negatively dependent on stand density, participating mainly in the biological processes of "circadian rhythm", "carbon metabolism", and "amino acid biosynthesis". Furthermore, we identified a photosynthesis-related module and constructed a gene regulatory network to discover that the transcription factors of MYB and bHLH may have important roles in the transcriptional regulation of photosynthesis biosynthesis by activating or repressing the expression of petA (Litul.15G096200), psbE (Litul.10G033900), and petD (Litul.17G061600) at different stand densities. Our study quantified the impact of stand density on tree growth at physiological and molecular levels. Our observations provide theoretical support for plantation establishment of L. chinense.

15.
Fitoterapia ; 179: 106229, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326797

RESUMEN

Two new tetraketide-derived phenol rhamnosides [botryrhamnosides A (1) and B (2)] and a new rhamnosylated tryptophol alkaloid (botryrhamnoside C, 3), along with seven related known compounds (4-10) were isolated from the solid culture of Botryosphaeria dothidea LE-07, an endophytic fungus residing in the leaves of the rare medicinal plant Chinese tulip tree (Liriodendron chinense). Their structures with the absolute configurations were determined by a combination of spectroscopy methods, comparing specific rotations, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Compounds 1 and 2 are rare tetraketide-derived resorcinols incorporating a l-rhamnose moiety, while 3 represents the first example of rhamnose-bound tryptophol derivatives produced by microorganisms. These metabolites were evaluated in vitro for their antimicrobial and anti-neuroinflammation activities. The rhamnosylated derivatives 1-5 displayed potent antibacterial activity against Escherichia coli, with MIC values in the range of 8-16 µg/mL. Compound 2 attenuated neuroinflammation in lipopolysaccharide (LPS)-induced BV-2 microglial cells, by decreasing the level of pro-inflammatory mediators [nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6)] and down-regulating the mRNA expression of inducible nitric oxide synthase (iNOS). In addition, compound 8 exhibited remarkable inhibitory effect against the ATP-citrate lyase (ACL), an emerging drug target for hyperlipidemia and related glycolipid metabolic disorders, with an IC50 value of 5.32 µM.

16.
Plant Physiol Biochem ; 206: 108204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043251

RESUMEN

GROWTH-REGULATING FACTORs (GRFs) play a pivotal role in the regulation of leaf size in plants and have been widely reported in plants. However, their specific functions in leaf size regulation in Liriodendron chinense remains unclear. Therefore, in this study, we identified GRF genes on a genome-wide scale in L. chinense to characterize the roles of LcGRFs in regulating leaf size. A total of nine LcGRF genes were identified, and these genes exhibited weak expression in mature leaves but strong expression in shoot apex. Notably, LcGRF2 exhibited the highest expression level in the shoot apex of L. chinense. Further RT-qPCR assay revealed that the expression level of LcGRF2 gradually decreased along with the leaf development process, and also displayed a gradient along the leaf proximo-distal and medio-lateral axes. Furthermore, overexpression of LcGRF2 in Arabidopsis thaliana resulted in increased leaf size, and significantly up-regulated the expression of genes involved in cell division like AtCYCD3;1, AtKNOLLE, and AtCYCB1;1, indicating that LcGRF2 may influence leaf size by promoting cell proliferation. This work contributes to a better understanding of the roles and molecular mechanisms of LcGRFs in the regulation of leaf size in L. chinense.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Liriodendron , Liriodendron/genética , Liriodendron/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Arabidopsis/genética , División Celular , Regulación de la Expresión Génica de las Plantas
17.
AoB Plants ; 16(2): plae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435968

RESUMEN

The plant-specific SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a pivotal role in various developmental processes, including leaf morphogenesis and vegetative to reproductive phase transition. Liriodendron chinense and Liriodendron tulipifera are widely used in landscaping due to their tulip-like flowers and peculiar leaves. However, the SPL gene family in Liriodendron has not been identified and systematically characterized. We systematically identified and characterized the SPL family members in Liriodendron, including phylogeny, gene structure and syntenic analyses. Subsequently, we quantified the expression patterns of LcSPLs across various tissue sites through transcription-quantitative polymerase chain reaction (RT-qPCR) assays and identified the target gene, LcSPL2. Finally, we characterized the functions of LcSPL2 via ectopic transformation. Altogether, 17 LcSPL and 18 LtSPL genes were genome-widely identified in L. chinense and L. tulipifera, respectively. All the 35 SPLs were grouped into 9 clades. Both species had three SPL gene pairs arising from segmental duplication events, and the LcSPLs displayed high collinearity with the L. tulipifera genome. RT-qPCR assays showed that SPL genes were differentially expressed in different tissues, especially. Because LcSPL2 is highly expressed in pistils and leaves, it was selected to describe the SPL gene family of L. chinense by ectopic expression. We showed that overexpression of LcSPL2 in Arabidopsis thaliana resulted in earlier flowering and fewer rosette leaves. Moreover, we observed that overexpression of LcSPL2 in A. thaliana up-regulated the expression levels of four genes related to flower development. This study identified SPL genes in Liriodendron and characterized the function of LcSPL2 in advancing flower development.

18.
Phytochemistry ; 218: 113956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135206

RESUMEN

Seventeen undescribed sesquiterpene-alkaloid hybrids (liriogerphines E-U, 1-17) were isolated and identified during a further phytochemical investigation on the branches and leaves of Chinese tulip tree (Liriodendron chinense), a rare medicinal and ornamental plant endemic to China. These unique heterodimers are conjugates of germacranolide-type sesquiterpenoids with structurally diverse alkaloids [i.e., aporphine- (1-15), proaporphine- (16), and benzyltetrahydroisoquinoline-type (17)] via the formation of a C-N bond. The previously undescribed structures were elucidated by comprehensive spectroscopic data analyses and electronic circular dichroism calculations. Such a class of sesquiterpene-alkaloid hybrids presumably biosynthesized via an aza-Michael addition is quite rare from terrestrial plants. In particular, the sesquiterpene-benzyltetrahydroisoquinoline hybrid skeleton has never been reported until the present study. All the isolates were evaluated for their cytotoxic effects against a small panel of leukemia cell lines (Raji, Jeko-1, Daudi, Jurkat, MV-4-11 and HL-60), and some of them exhibited considerable activities.


Asunto(s)
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Liriodendron/química , Alcaloides/química , Hojas de la Planta/química , Sesquiterpenos/química , Estructura Molecular
19.
Gene ; 902: 148180, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253298

RESUMEN

Terpenoids are not only important component of plant floral scent, but also indispensable elements in the formation of floral color. The petals of Liriodendron chinense are rich in tetraterpene carotenoids and release large amounts of volatile monoterpene and sesquiterpene compounds during full blooming stage. However, the mechanism of terpenoid synthesis is not clear in L. chinense. In this study, we identified a LcMCT gene and characterized its potential function in carotenoids biosynthesis. A total of 2947 up-regulated differentially expressed genes (DEGs) were discerned from the transcriptomic data of L. chinense petals, with a significant enrichment of DEGs related to plant hormone signal transduction and terpenoid backbone biosynthesis. After comprehensive analysis on these DEGs, the LcMCT gene was selected for subsequent function characterization. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results showed that LcMCT was expressed at the highest level in the petals during full blooming stage, suggesting a possible role in carotenoids biosynthesis and volatile terpenoid biosynthesis. Subcellular localization showed that the LcMCT protein was localized in the chloroplast. Overexpression of LcMCT in Arabidopsis thaliana affected the expression levels of MEP pathway genes. Moreover, the MCT enzyme activity and carotenoids contents in transgenic A. thaliana were increased by 69.27% and 15.57%, respectively. These results suggest that LcMCT promotes the biosynthesis of terpenoid precursors via the MEP pathway. Our work lays a foundation for exploring the mechanism of terpenoid synthesis in L. chinense.


Asunto(s)
Carotenoides , Liriodendron , Liriodendron/genética , Liriodendron/metabolismo , Terpenos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
20.
Am J Bot ; 100(10): 2112-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24107584

RESUMEN

PREMISE OF THE STUDY: We investigate factors supporting the persistence in southern China of a rare Tertiary relict tree species, Liriodendron chinense, which has been almost eliminated by recent land use conversion. We hypothesize that cultural practices and traditional sustainable forest resource uses provide niches for the species' regeneration that will complement infrequent natural disturbances, while the species' survival on remote mountain slopes where there are no humans depends on natural disturbances alone. • METHODS: We examined and analyzed various landscape contexts, community associations, age distributions, and regeneration patterns of Liriodendron chinense. • KEY RESULTS: Forest communities containing Liriodendron chinense were of three types: (1) village fengshui forests-mature forests dominated by Tertiary relict taxa Liriodendron, Toona, and Emmenopterys, protected for their supposed spiritual value; (2) young secondary forests near villages, dominated solely by Liriodendron; and (3) old secondary forest remnants on mountain slopes far from villages, dominated by Liriodendron with other Tertiary relicts of the genera Davidia and Sassafras. The age structure of Liriodendron indicated ample recruitment in the first two forest types, where the activities of local people have provided regeneration niches for the survival of this shade-intolerant pioneer species. On the remote mountain slopes that have never been converted to agriculture, Liriodendron has survived through regeneration made possible by natural disturbances. • CONCLUSIONS: The traditional human land use, influenced by cultural values, has supplemented infrequent natural disturbances, providing regeneration niches for this and other Tertiary remnant species near villages in mountain valleys, while on uninhabited mountain slopes the species depends on natural disturbances to survive.


Asunto(s)
Ecosistema , Liriodendron/crecimiento & desarrollo , Población Rural , Árboles/crecimiento & desarrollo , China , Geografía , Humanos , Dinámica Poblacional , Regeneración , Especificidad de la Especie , Madera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA